We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Type
Building Advanced Materials via Particle Aggregation and Molecular Self-Assembly
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Footnotes
This special issue of the Journal of Materials Research contains articles that were accepted in response to an invitation for manuscripts.
References
1
Wright, A., Gabaldon, J., Burckel, D.B., Jiang, Y.B., Tian, Z.R., Liu, J., Brinker, C.J., and Fan, H.: Hierarchically organized nanoparticle mesostructure arrays formed through hydrothermal self-assembly. Chem. Mater.18, 3034–3038 (2006).CrossRefGoogle Scholar
2
Zhang, X., Cui, W., Page, K.L., Pearce, C.I., Bowden, M.E., Graham, T.R., Shen, Z., Li, P., Wang, Z., Kerisit, S., N’Diaye, A.T., Clark, S.B., and Rosso, K.M.: Size and morphology controlled synthesis of boehmite nanoplates and crystal growth mechanisms. Cryst. Growth Des.18, 3596–3606 (2018).CrossRefGoogle Scholar
3
Yang, K., Fan, H., Malloy, K.J., Brinker, C.J., and Sigmon, T.W.: Optical and electrical properties of self-assembled, ordered gold nanocrystal/silica thin films prepared by sol–gel processing. Thin Solid Films491, 38–42 (2005).CrossRefGoogle Scholar
4
Sun, Z., Bai, F., Wu, H., Boye, D.M., and Fan, H.: Monodisperse fluorescent organic/inorganic composite nanoparticles: Tuning full color spectrum. Chem. Mater.24, 3415–3419 (2012).CrossRefGoogle Scholar
5
Cho, I.S., Chen, Z., Forman, A.J., Kim, D.R., Rao, P.M., Jaramillo, T.F., and Zheng, X.: Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett.11, 4978–4984 (2011).CrossRefGoogle Scholar
6
Huang, X., Hou, X., Zhang, X., Rosso, K.M., and Zhang, L.: Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environ. Sci. Nano5, 1790–1806 (2018).CrossRefGoogle Scholar
7
Yang, Y., Wang, B., Shen, X., Yao, L., Wang, L., Chen, X., Xie, S., Li, T., Hu, J., Yang, D., and Dong, A.: Scalable assembly of crystalline binary nanocrystal superparticles and their enhanced magnetic and electrochemical properties. J. Am. Chem. Soc.140, 15038–15047 (2018).CrossRefGoogle ScholarPubMed
8
De Yoreo, J.J., Gilbert, P.U., Sommerdijk, N.A., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Colfen, H., and Dove, P.M.: CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science349, aaa6760 (2015).CrossRefGoogle ScholarPubMed
9
Colfen, H. and Antonietti, M.: Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed. Engl.44, 5576–5591 (2005).CrossRefGoogle ScholarPubMed
10
Nakouzi, E., Soltis, J.A., Legg, B.A., Schenter, G.K., Zhang, X., Graham, T.R., Rosso, K.M., Anovitz, L.M., De Yoreo, J.J., and Chun, J.: Impact of solution chemistry and particle anisotropy on the collective dynamics of oriented aggregation. ACS Nano12, 10114–10122 (2018).CrossRefGoogle ScholarPubMed
11
Jehannin, M., Rao, A., and Colfen, H.: New horizons of nonclassical crystallization. J. Am. Chem. Soc.141, 10120–10136 (2019).CrossRefGoogle ScholarPubMed
12
De Yoreo, J. and Whitelam, S.: Nucleation in atomic, molecular, and colloidal systems. MRS Bull.41, 357–360 (2016).CrossRefGoogle Scholar
13
Fang, J., Du, S., Lebedkin, S., Li, Z., Kruk, R., Kappes, M., and Hahn, H.: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett.10, 5006–5013 (2010).CrossRefGoogle ScholarPubMed
14
Yu, X., Wang, D., Peng, Q., and Li, Y.: Pt–M (M = Cu, Co, Ni, Fe) nanocrystals: From small nanoparticles to wormlike nanowires by oriented attachment. Chemistry19, 233–239 (2013).CrossRefGoogle ScholarPubMed
15
Pacholski, C., Dipl.-Ing, A.K., and Weller, H.: Self-assembly of ZnO-from nanodots to nanorods. Angew. Chem., Int. Ed.41, 1188–1191 (2002).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
16
Penn, R.L. and Banfield, J.F.: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science281, 969–971 (1998).CrossRefGoogle ScholarPubMed
Niederberger, M. and Colfen, H.: Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys.8, 3271–3287 (2006).CrossRefGoogle ScholarPubMed
19
Sun, S., Gebauer, D., and Colfen, H.: Alignment of amorphous iron oxide clusters: A non-classical mechanism for magnetite formation. Angew. Chem., Int. Ed. Engl.56, 4042–4046 (2017).CrossRefGoogle ScholarPubMed
20
Cho, K.S., Talapin, D.V., Gaschler, W., and Murray, C.B.: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc.127, 7140–7147 (2005).CrossRefGoogle ScholarPubMed
21
Bian, K., Li, R., and Fan, H.: Controlled self-assembly and tuning of large PbS nanoparticle supercrystals. Chem. Mater.30, 6788–6793 (2018).CrossRefGoogle Scholar
22
Jiang, W., Pacella, M.S., Athanasiadou, D., Nelea, V., Vali, H., Hazen, R.M., Gray, J.J., and McKee, M.D.: Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun.8, 15066 (2017).CrossRefGoogle ScholarPubMed
23
Gehrke, N., Cölfen, H., Pinna, N., Antonietti, M., and Nassif, N.: Superstructures of calcium carbonate crystals by oriented attachment. Cryst. Growth Des.5, 1317–1319 (2005).CrossRefGoogle Scholar
24
Hochella, M.F.Jr., Mogk, D.W., Ranville, J., Allen, I.C., Luther, G.W., Marr, L.C., McGrail, B.P., Murayama, M., Qafoku, N.P., Rosso, K.M., Sahai, N., Schroeder, P.A., Vikesland, P., Westerhoff, P., and Yang, Y.: Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science363, (2019).CrossRefGoogle ScholarPubMed
Shi, H., Kwok, R.T.K., Liu, J., Tang, B.Z., and Liu, B.: Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc.134, 17972–17981 (2012).CrossRefGoogle ScholarPubMed
He, M., Cao, B.B., Gao, X.X., and Yang, J.H.: Synthesis of multi-branched gold nanostructures and their surface-enhanced Raman scattering properties of 4-aminothiophenol. J. Mater. Res. (2019). doi: https://doi.org/10.1557/jmr.2018.503.CrossRefGoogle Scholar
29
Zhang, M.F., Chen, Z.X., Wang, Z., Zheng, Z.Y., and Wang, D.P.: Graphene oxide coated popcorn-like Ag nanoparticles for rapid quantitative SERS detection of drug residues. J. Mater. Res. (2019). doi: https://doi.org/10.1557/jmr.2019.78.Google Scholar
30
Chen, M., Qian, J., Sun, X., Chen, W., Uyama, H., and Wang, X.: A green and facile strategy for hierarchically porous poly(lactic acid)/poly(ε-caprolactone) monolithic composites. J. Mater. Res. (2019). doi: https://doi.org/10.1557/jmr.2019.214.CrossRefGoogle Scholar
31
Zhang, X.W., Ge, Y.Z., Zhu, G.T., Tang, J.C., Xing, X.J., and Li, N.: Effect of acid and hydrothermal treatments on the multilayer adsorption of Cr(VI) and dyes on biomass-derived nano/mesoporous carbon. J. Mater. Res. (2019). doi: https://doi.org/10.1557/jmr.2019.155.CrossRefGoogle Scholar
32
Zhang, M., Meng, J., Liu, Q.Y., Gu, S.Y., Zhao, L., Dong, M.Y., Zhang, J.X., Hou, H., and Guo, Z.H.: Corn stovers derived biochar for efficient adsorption of oxytetracycline from wastewater. J. Mater. Res. (2019). doi: https://doi.org/10.1557/jmr.2019.198.CrossRefGoogle Scholar
33
Wang, L., Hu, H., Xu, J., Zhu, S., Ding, A., and Deng, C.: Hydrothermal synthesis and growth mechanism of WO3 nanocubes displaying the excellent photocatalytic performance. J. Mater. Res. (2019). doi: https://doi.org/10.1557/jmr.2019.189.CrossRefGoogle Scholar
34
Zhang, X., He, Y., Sushko, M.L., Liu, J., Luo, L., De Yoreo, J.J., Mao, S.X., Wang, C., and Rosso, K.M.: Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science356, 434–437 (2017).CrossRefGoogle Scholar
35
Zhang, X., He, Y., Liu, J., Bowden, M.E., Kovarik, L., Mao, S.X., Wang, C., De Yoreo, J.J., and Rosso, K.M.: Accessing crystal-crystal interaction forces with oriented nanocrystal atomic force microscopy probes. Nat. Protoc.13, 2005–2030 (2018).CrossRefGoogle ScholarPubMed