Published online by Cambridge University Press: 31 January 2011
Borosilicate glass films were made by the sol-gel method from tetraethoxysilane and trimethylborate precursors. The precursor or glass composition at each stage of processing was analyzed to determine the sources of boron loss. The films were heated in a furnace and with a laser to compare boron volatilization by the two heating methods. The films were characterized by infrared spectroscopy, ellipsometry, induction-charged plasma spectroscopy, and Auger microscopy. The highest losses of boron occurred during coating and low temperature (<500 °C) furnace firing. Films with the highest boron concentrations were made by dip coating and rapid firing, either with a laser or by placing them into a hot furnace. Infrared spectroscopy revealed Si–O–B bonds, indicating incorporation of boron into the borosilicate glass structure for laser- and furnace-fired films.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.