Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-25T04:50:23.976Z Has data issue: false hasContentIssue false

Biomimetic synthesis of BaSO4 nanotubes using eggshell membrane as template

Published online by Cambridge University Press:  01 October 2004

Jin-Ku Liu
Department of Chemistry, Tongji University, Shanghai 200092, People’s Republic of China
Qing-Sheng Wu*
Department of Chemistry, Tongji University, Shanghai 200092, People’s Republic of China
Ya-Ping Ding
Department of Chemistry, Shanghai University, Shanghai 200436, People’s Republic of China
Shu-Yu Wang
Department of Chemistry, Tongji University, Shanghai 200092, People’s Republic of China
a) Address all correspondence to this author. e-mail:
Get access


BaSO4 nanotubes were biomimetically synthesized by the combined assembly of eggshell membrane and C12H25SH. The products were tubular structure with the external diameter of 90–140 nm and the length of 1.5–2.5 μm. The formation mechanism was also investigated. It provided a novel method for the fabrication of inorganic oxysalt nanotubes.

Rapid Communications
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2Li, Y.D., Wang, J.W., Deng, Z.X., Wu, Y.Y., Sun, X.M., Yu, D.P. and Yang, P.D.: Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 123, 9904 (2001).CrossRefGoogle ScholarPubMed
3Wang, X., Sun, X.M., Yu, D.P., Zou, B.S. and Li, Y.D.: Rare earth compound nanotubes. Adv. Mater. 15, 1442 (2003).CrossRefGoogle Scholar
4Fan, R., Wu, Y., Li, D., Yue, M., Majumdar, A. and Yang, P.D.: Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 125, 5254 (2003).CrossRefGoogle ScholarPubMed
5Liu, S.M., Gan, L.M., Liu, L.H., Zhang, W.D. and Zeng, H.C.: Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 14, 1391 (2002).CrossRefGoogle Scholar
6Chen, J., Li, S.L., Gao, F. and Tao, Z.L.: Synthesis and characterization of WS2 nanotubes. Chem. Mater. 15, 1012 (2003).CrossRefGoogle Scholar
7Zhang, Z.L., Wu, Q.S. and Ding, Y.P.: Inducing synthesis of cadmium sulphide nanotube by PTFE template. Inorg. Chem. Comm. 6, 1393 (2003).CrossRefGoogle Scholar
8Nath, M. and Rao, C.N.R.: New metal disulfide nanotubes. J. Am. Chem. Soc. 123, 4841 (2001).CrossRefGoogle ScholarPubMed
9Brorson, M., Hansen, T.W. and Jacobsen, C.J.H.: Rhenium(IV) sulfide nanotubes. J. Am. Chem. Soc. 124, 11582 (2002).CrossRefGoogle ScholarPubMed
10Lu, Q.Y., Gao, F. and Zhao, D.Y.: One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett. 2, 725 (2002).CrossRefGoogle Scholar
11Ma, R.Z., Bando, Y., Zhu, H.W., Sato, T., Xu, C.L. and Wu, D.H.: Hydrogen uptake in boron nitride nanotubes at room temperature. J. Am. Chem. Soc. 124, 7672 (2002).CrossRefGoogle ScholarPubMed
12Wang, X.B., Liu, Y.Q., Zhu, D.B., Zhang, L., Ma, H.Z., Yao, N. and Zhang, B.L.: Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J. Phys. Chem. B 106, 2186 (2002).CrossRefGoogle Scholar
13Bakkers, Erik P.A.M. and Verheijen, Marcel A.: Synthesis of InP nanotubes. J. Am. Chem. Soc. 125, 3440 (2003).CrossRefGoogle ScholarPubMed
14Han, W.Q., Kohler-Redlich, P., Ernst, F. and Rühle, M.: Formation of (BN)xCy and BN nanotubes filled with boron carbide nanowires. Chem. Mater. 11, 3620 (1999).CrossRefGoogle Scholar
15Hernandez, Bernadette A., Chang, Ki-Seog, Fisher, Ellen R. and Dorhout, Peter K.: Sol-Gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480 (2002).CrossRefGoogle Scholar
16Xu, A.W., Fang, Y.P., You, L.P. and Liu, H.Q.: A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J. Am. Chem. Soc. 125, 1494 (2003).CrossRefGoogle Scholar
17Hsu, W.K., Zhu, Y.Q., Boothroyd, C.B., Kinloch, I., Trasobares, S., Terrones, H., Grobert, N., Terrones, M., Escudero, R., Chen, G.Z., Colliex, C., Windle, A.H., Fray, D.J., Kroto, H.W. and Walton, D.R.M.: Mixed-phase W xMoyCz S2 nanotubes. Chem. Mater. 12, 3541 (2000).CrossRefGoogle Scholar
18Millet, P., Henry, J.Y., Mila, F. and Galy, J.: Vanadium(IV) oxide nanotubes: crystal structure of the low-dimensional quantum magnet Na2V3O7. J. Solid State Chem. 147, 676 (1999).CrossRefGoogle Scholar
19Junghwan, D. and Jacobson, A.J.: Nickel vanadate nanotubes: Synthesis and crystal structure of [Ni(C8H22N4)](VO3)2·3H2O. Inorg. Chem. 40, 2468 (2001).Google Scholar
20Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G. and Zettl, A.: Boron nitride nanotubes. Science 269, 966 (1995).CrossRefGoogle ScholarPubMed
21Satishkumar, B.C., Govindaraj, A., Vogl, E.M., Basumallick, L. and Rao, C.N.R.: Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 12, 604 (1997).CrossRefGoogle Scholar
22Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
23Spector, M.S., Selinger, J.V., Singh, A., Rodriguez, J.M., Price, R.R. and Schnur, J.M.: Controlling the morphology of chiral lipid tubules. Langmuir 14, 3493 (1998).CrossRefGoogle Scholar
24Selinger, J.V., Spector, M.S. and Schnur, J.M.: Theory of self-assembled tubules and helical ribbons. J. Phys. Chem. B 105, 7157 (2001).CrossRefGoogle Scholar
25 NBS Monograph. 23, 10 (1972).CrossRefGoogle Scholar
26Hincke, M.T., Gautron, U.J., Panheleux, M., Garcia-Ruiz, J., McKee, M.D. and Nys, Y.: Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol. 19, 443 (2000).CrossRefGoogle ScholarPubMed
27Ajikumar, P.K., Lakshminarayanan, R., Ong, B.T., Valiyaveettil, S. and Kini, R.M.: Eggshell matrix protein mimics: Designer peptides to induce the nucleation of calcite crystal aggregates in solution. Biomacromolecules 4, 1321 (2003).CrossRefGoogle ScholarPubMed
28Wu, T.M., Rodriguez, J.P., Fink, D.J., Carrino, D.A., Blackwell, J., Caplan, A.I. and Heuer, A.H.: Crystallization studies on avian eggshell membranes: Implications for the molecular factors controlling eggshell formation. Matrix Biol. 14, 507 (1994).CrossRefGoogle Scholar
29Fernandez, M.S., Moya, A., Luis, L. and Luis, A.J.: Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol. 19, 793 (2001).CrossRefGoogle Scholar