Skip to main content Accessibility help
×
Home

An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials

Published online by Cambridge University Press:  06 March 2019


Siavash Ghanbari
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA
David F. Bahr
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA
Corresponding
E-mail address:

Abstract

Concurrently assessing localized residual stresses and mechanical properties in cases where there are gradients in stresses and properties (such as those resulting in metallic alloys from shot peening processes) is challenging. Most indentation-based stress measurements assume uniform properties, which is not necessarily the case in this common industrial process. By using the energy envelope describing the total work of indentation by a load–displacement curve from instrumented indentation, localized residual stresses after shot peening were evaluated experimentally. A framework is developed to describe the appropriate indentation depth at which to assess properties that effectively define the volumetric resolution of the method. The residual stresses predicted via the nanoindentation experiment and energy analysis were validated with X-ray measurement of residual stresses on a shot-peened 52100 steel. The energy method can be applied directly from the indentation load–displacement curve without considering the contact area.


Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

König, G.W.: Life Enhancement of Aero Engine Components by Shot Peening Opportunities and Risks, 3rd ed. (Wiley-VCH, Weinheim, Germany, 2003); p. 13.Google Scholar
Seifi, R. and Majd, D.S.: Effects of plasticity on residual stresses measurement by hole drilling method. Mech. Mater. 53, 73 (2012).CrossRefGoogle Scholar
Mahmoodi, M., Sedighi, M., and Tanner, D.: Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction. Mater. Des. 40, 516 (2012).CrossRefGoogle Scholar
Suresh, S. and Giannakapulos, A.E.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755 (1998).CrossRefGoogle Scholar
Tsui, T.Y., Oliver, W.C., and Pharr, G.M.: Influence of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in a aluminum alloy. J. Mater. Res. 11, 752 (1995).CrossRefGoogle Scholar
Meng, Q.N., Wen, M., Hu, C.Q., Wang, S.M., Zhang, K., Lian, J.S., and Zheng, W.: Influence of the residual stress on the nanoindentation-evaluated hardness for zirconium nitride films. Surf. Coat. Technol. 206, 3250 (2012).CrossRefGoogle Scholar
Bolshakov, A., Oliver, W.C., and Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation II. Finite element simulations. J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
, Z.H. and Li, X.: Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. Acta Mater. 53, 1913 (2005).CrossRefGoogle Scholar
Khan, M.K., Fitzpatrick, M., Hanisworth, S.V., and Edwards, L.: Effect of residual stress on the nanoindentation response of aerospace aluminum alloys. Comput. Mater. Sci. 50, 2967 (2011).CrossRefGoogle Scholar
Zhu, L., Xu, B., Wang, H.D., and Wang, C.: Measurement of mechanical properties of 1045 steel with significant pile-up by sharp indentation. J. Mater. Sci. 46, 83 (2011).CrossRefGoogle Scholar
Mann, P., Miao, H.Y., Garepy, A., Levesque, M., and Chromik, R.R.: Residual stress near single shot peening impingments determined by nanoindentation and numerical simulations. J. Mater. Sci. 50, 2284 (2015).CrossRefGoogle Scholar
Carlsson, S. and Larsson, P.: On the determination of residual stress and strain fields by sharp indentation testing theoretical and numerical analysis. Acta Mater. 49, 2179 (2001).CrossRefGoogle Scholar
Swadener, J.G., Taljat, B., and Pharr, G.M.: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).CrossRefGoogle Scholar
Wang, Q., Ozaki, A.K., Ishikavawa, B.H., Nakano, S., and Ogiso, H.: Indentation method to measure the residual stress induced. Nucl. Instrum. Methods 242, 8892 (2006).CrossRefGoogle Scholar
Oliver, W. and Pharr, G.: Measurement of hardness and elastic modulus by instrument indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 3, 12 (2004).Google Scholar
Zhu, L., Xu, B., Wng, D., and Wang, B.: Effect of residual stress on the nanoindentation response of (100) copper single crystal. Mater. Chem. Phys. 136, 561 (2012).CrossRefGoogle Scholar
Pharr, G. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).CrossRefGoogle Scholar
Shrshorov, M., Bulychev, S.I., and Alekhin, V.O.: Work of plastic and elastic deformation during indenter indentation. Sov. Phys. Dokl. 26, 769771 (1981).Google Scholar
Hainsworth, S.V., Chandler, H.W., and Page, T.F.: Analysis of nanoindentation load–displacement loading curves. J. Mater. Res. 11, 8 (1996).CrossRefGoogle Scholar
Chaudhri, M.M.: Subsurface strain distribution around Vickers. Acta Mater. 46, 3047 (1998).CrossRefGoogle Scholar
Tabor, D.: The Hardness of Solid (Oxford University Press, Oxford, England, 1951).Google Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystaline materials a low for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).CrossRefGoogle Scholar
Wolf, B. and Richter, A.: The concept of differential hardness in depth sensing. New J. Phys. 5, 215 (2003).CrossRefGoogle Scholar
Wolf, B., Richter, A., and Gunther, M.: Approaches of quantifying the entire load–depth curve in terms of hardness. Z. Met. 94, 807812 (2003).Google Scholar
Rydin, A. and Larsson, P.: On the correlation between residual stresses and global indentation quantities equibiaxial stress field. Tribol. Lett. 31, 42 (2012).Google Scholar
Oliver, W.C. and Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752 (1996).Google Scholar
Youkendou, K.: X-ray stress measurement method. Japan Soc. Mater. Sci. 54, 225 (1981).Google Scholar
Yoshioka, Y., Ohya, S., and Shinkai, T.: Influence of image processing conditions of debye. J. JSNDI. 39, 666 (1990).Google Scholar
Sasaki, T. and Hirose, Y.: Influence of image processing conditions of debye scherrer ring images in X-ray stress measurement using an imaging plate. JCPDS-International Centre for Diffraction Data 2, 1254 (1997).Google Scholar
Taira, S. and Tanaka, K.: Local residual stress near fatigue crack tip. Soc. Mater. Sci. 27, 251 (1978).CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 83
Total number of PDF views: 272 *
View data table for this chart

* Views captured on Cambridge Core between 06th March 2019 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-jgbff Total loading time: 2.814 Render date: 2020-12-02T10:54:23.178Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 10:05:31 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *