Skip to main content Accessibility help

Ab-initio molecular characterization of nonclassical fullerenes cluster using two probe approach

  • Milanpreet Kaur (a1), Ravinder Singh Sawhney (a1) and Derick Engles (a1)


We outline the scrutiny of the two probe devices formed by placing the nonclassical fullerene molecules C M (20 ≤ M ≤ 30) within semi-infinite gold electrodes using density functional theory. The electronic structure and molecular orbitals of isolated fullerene molecules are broadened to form junction devices with charge injection at zero as well as variegated bias respectively. The molecular junctions thus formed are contemplated for two important electrical constitutions, current, and conductance. These parameters are then elaborated and contemplated for their electronic parameters namely, the density of states, transmission coefficient, molecular orbitals, molecular projected self-consistent Hamiltonian states, electron density, and Mulliken population. We conclude that C20 and C24 fullerene molecule exhibits extremely metallic behavior while others fail to demonstrate such behavior. The molecular device, thus formed, strongly supports the superconductive behavior of the C24 molecule with an ability to easily adapt by modulating its active molecular orbitals under applied potential.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Fowler, P.W. and Manolopoulos, D.E.: An Atlas of Fullerenes (Clarendon Press, Oxford, 1995).
2. Guldi, D.M. and Martín, N.: Fullerenes: From Synthesis to Optoelectronic Properties (Kluwer Academic Publishers, Dordrecht, 2002).
3. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R.: Solid C60: A new form of carbon. Nature 347, 354 (1990).
4. Hebard, A.F., Rosseinskky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.T., Palstra, T.T.M., Ramirez, A.P., and Kortan, A.R.: Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600 (1992).
5. Winter, J. and Kuzmany, H.: Potassium-doped fullerene K X C60 with X = 0, 1, 2, 3, 4, and 6. Solid State Commun. 84, 935 (1992).
6. Stephens, P.W., Cox, D., Lauher, J.W., Mihaly, L., Wiley, J.B., Allemand, P.M., Hirsch, A., Holczer, K., Li, Q., Thompson, J.D., and Wudl, F.: Lattice structure of the fullerene ferromagnet, TDAE-C60 . Nature 355, 331 (1992).
7. Li, Y., Huang, Y., Du, S., and Liu, R.: Structures and stabilities of C60-rings. Chem. Phys. Lett. 335, 524 (2001).
8. Ruoff, R.S., Tse, D.S., Malhotra, R., and Lorents, D.C.: Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97, 3379 (1993).
9. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).
10. Xu, S.H., Zhang, M.Y., Zhao, Y.Y., Chen, B.G., Zhang, J., and Sun, C.C.: Super-valence phenomenon of carbon atoms in C20 molecule. J. Mol. Struct.: THEOCHEM 760, 87 (2006).
11. Kroto, H.W.: The stability of the fullerenes C n , with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329, 529 (1986).
12. Campbell, E.E.B., Fowler, P.W., Mitchell, D., and Zerbetto, F.: Increasing cost of pentagon adjacency for larger fullerenes. Chem. Phys. Lett. 250, 544548 (1996).
13. Albertazzi, E., Domene, C., Fowler, P.W., Heine, T., Seifert, G., Van Alsenoy, C., and Zerbetto, F.: Pentagon adjacency as a determinant of fullerene stability. Phys. Chem. Chem. Phys. 1, 2913 (1999).
14. Aradhya, S.V. and Venkataraman, L.: Single-molecule junctions beyond electronics transport. Nat. Nanotechnol. 8, 399 (2013).
15. Xu, B.Q. and Tao, N.J.: Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003).
16. Aviram, A. and Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277 (1974).
17. Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L.T., Gelmont, M., Olevano, D., and Issendorff, B.V.: Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20 . Nature 407, 60 (2000).
18. Sokolova, S., Lüchow, A., and Anderson, J.B.: Energetics of carbon clusters C20 from all-electron quantum Monte Carlo calculations. Chem. Phys. Lett. 323, 229 (2000).
19. Spagnolatti, I., Bernasconi, M., and Benedek, G.: Electron-phonon interaction in the solid form of the smallest fullerene C20 . Europhys. Lett. 59, 572 (2002).
20. An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., and Wang, D.H.: First-principles study of structure and quantum transport properties of C20 fullerene. J. Chem. Phys. 131, 024311 (2009).
21. An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., and Wang, D.H.: First-principles study of transport properties of endohedral Li@C20 metallofullerene. Curr. Appl. Phys. 10, 260 (2010).
22. Jensen, F. and Koch, H.: C24: Ring or fullerene? J. Chem. Phys. 108, 3213 (1998).
23. An, W., Shao, N., Bulusu, S., and Zenga, X.C.: Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24 . J. Chem. Phys. 128, 084301 (2008).
24. Zhao, W.K., Yang, C., Zhao, J., Wang, M., and Ma, X.: Orientation effect on the electronic transport properties of C-24 fullerene molecule. Phys. B 407, 2247 (2012).
25. Kaur, M., Sawhney, R.S., and Engles, D.: In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET) (IEEE, Chennai, 2013); pp. 426430.
26. Kent, P.R.C., Towler, M.D., Needs, R.J., and Rajagopal, G.: Carbon clusters near the crossover to fullerene stability. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 15394 (2000).
27. Lu, X. and Chen, Z.: Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643 (2005).
28. Hong, B., Chang, Y., Jalbout, A.F., Su, Z., and Wang, R.: On the chlorides of C26 fullerene. A theoretical study. Mol. Phys. 105, 95 (2007).
29. Małolepsza, E. and Witek, H.A.: Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20–C36 . J. Phys. Chem. A 111, 6649 (2007).
30. An, J., Gan, L., Zhao, J., and Li, R.: A global search for the lowest energy isomer of C26 . J. Chem. Phys. 132, 154304 (2010).
31. Martin, J.M.L.: C28: The smallest stable fullerene? Chem. Phys. Lett. 255, 1 (1996).
32. Makurin, Y.N., Sofronov, A.A., Gusev, A.I., and Ivanovsky, A.L.: Electronic structure and chemical stabilization of C28 fullerene. Chem. Phys. 270, 293 (2001).
33. Mishra, R.K., Lin, Y.T., and Lee, S.L.: C28 (D2): Fullerene growth mechanism. Int. J. Quantum Chem. 84, 642 (2001).
34. Pahuja, A. and Srivastava, S.: Electronic transport properties of doped C28 fullerene. Phys. Res. Int. 2014, 872381 (2014).
35. Song, J., Parker, M., Schoendorff, G., Kus, A., and Vaziri, M.: A study on the electronic and structural properties of fullerene C30 and azafullerene C18N12 . J. Mol. Struct.: THEOCHEM 942, 71 (2010).
36. Jones, R.O.: Density functional study of carbon clusters C2n C2n (2 ≤ n ≤ 16) I. Structure and bonding in the neutral clusters. J. Chem. Phys. 110, 5189 (1999).
37. Zhang, R.Q., Feng, Y.Q., Lee, S.T., and Bai, C.L.: Electrical transport and electronic delocalization of small fullerenes. J. Phys. Chem. B 108, 16636 (2004).
38. Kaur, M., Sawhney, R.S., and Engles, D.: Non-equilibrium tunneling through Au–C20–Au molecular bridge using density functional theory–non-equilibrium Green function approach. J. Mater. Res. 31, 2025 (2016).
39. Kaur, M., Sawhney, R.S., and Engles, D.: Transport in fullerene device coupled to Cu, Ag and Au electrodes. Mol. Phys. 114, 3255 (2016).
40. Stokbro, K.: First-principles modeling of electron transport. J. Phys.: Condens. Matter 20, 064216 (2008).
41. Atomistix Tool Kit Manual Version 13.8.0 (Copyright QuantumWise 2008–2016).
42. Strange, M., Kristensen, S., Thygesen, K.S., and Jacobsen, K.W.: Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys. 128, 114714 (2008).
43. Troullier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 1993 (1991).
44. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., and Foxon, C.T.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).
45. Solomon, G.C., Herrmann, C., Hansen, T., Mujica, V., and Ratner, M.A.: Exploring local currents in molecular junctions. Nat. Chem. 2, 223 (2010).


Ab-initio molecular characterization of nonclassical fullerenes cluster using two probe approach

  • Milanpreet Kaur (a1), Ravinder Singh Sawhney (a1) and Derick Engles (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed