Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T05:37:28.373Z Has data issue: false hasContentIssue false

The 1430 cm−1 Raman line in single crystals of La2CuO4−y

Published online by Cambridge University Press:  31 January 2011

I. Ohana
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus*
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
D. Heiman
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
G. Dresselhaus
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
P. J. Picone*
Affiliation:
Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Also Department of Electrical Engineering and Computer Science.
b)Permanent address: Defense Science Technology Organization, Adelaide, Australia.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Raman line at 1430 cm−1 (M-line) in single crystal La2CuO4−y was studied as a function of doping, temperature, magnetic field, and excitation wavelength. Upon Li doping the line becomes broader, and it vanishes rapidly with Sr-doping. The line also broadens with increasing temperature and increasing applied magnetic field. Resonance enhancement was found for decreasing laser excitation energies but was not as pronounced as the enhancement of several alleged two-phonon lines. Many of these features are correlated with the 2D antiferromagnetic ordering measured in this system by neutron scattering. The possible identification of this line as a one-spin excitation is favored by the data though a two-phonon excitation is also considered.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

References

1Shirane, G.Endoh, Y.Birgeneau, R. J.Kastner, M. A.Hidaka, Y.Oda, M.Suzuki, M. and Murakami, T.Phys. Rev. Lett. 59 1613 (1987).CrossRefGoogle Scholar
2Lyons, K.B.Fleury, P. A.Remeika, J.P.Cooper, A.S. and Negran, T.J.Phys. Rev. B37 2353 (1988).CrossRefGoogle Scholar
3Weber, W.H.Peters, C.R.Wanklyn, B.M.Chen, C. and Watts, B.E.Phys. Rev. B38 917 (1988).CrossRefGoogle Scholar
4Ohana, I.Dresselhaus, M.S.Liu, Y. C.Picone, P. J.Gabbe, D. R.Jenssen, H.P. and Dresselhaus, G.Phys. Rev. B39 2293 (1989).CrossRefGoogle Scholar
5Picone, P. J.Jenssen, H. P. and Gabbe, D. R.J. Cryst. Growth 85 576 (1987).CrossRefGoogle Scholar
6Endoh, Y.Yamada, K.Birgeneau, R. J.Gabbe, D. R.Jenssen, H. P.Kastner, M. A.Peters, C. J.Picone, P. J.Thurston, T. R.Tranquada, J. M.Shirane, G.Hidaka, Y.Oda, M.Enomoto, Y.Suzuki, M. and Murakami, T.Phys. Rev. B37 7443 (1988).CrossRefGoogle Scholar
7Kastner, M.A.Birgeneau, R.J.Chen, C.Y.Chiang, Y. M.Gabbe, D. R.Jenssen, H. P.Junk, T.Peters, C. J.Picone, P. J.Thio, T.Thurston, T. R. and Tuller, H.L.Phys. Rev. B37 111 (1988).CrossRefGoogle Scholar
8Ohana, I.Liu, Y.Dresselhaus, M.S.Dresselhaus, G.Strauss, A.J.Zeiger, H. J.Picone, P. J.Jenssen, H. P. and Gabbe, D. R. in High Temperature Superconductors, edited by Brodsky, M. B.Dynes, R. C.Kitazawa, K. and Tuller, H. L. (Materials Research Society, Pittsburgh, PA, 1988), Vol. 99, p. 439.Google Scholar
9Peters, C.J.Birgeneau, R.J.Kastner, M. A.Yoshizawa, H.Endoh, Y.Tranquada, J.Shirane, G.Hidaka, Y.Oda, M.Suzuki, M. and Murakami, T.Phys. Rev. B37 9761 (1988).CrossRefGoogle Scholar
10Ohana, I.Heiman, D.Dresselhaus, M. S. and Dresselhaus, G. (1988) (unpublished research).Google Scholar
11Oliveira, N.F. Jr. , Nicholls, J. T.Shapira, Y.Dresselhaus, G.Dresselhaus, M.S., Picone, P. J.Gabbe, D. R. and Jenssen, H. P.Phys. Rev. B39 2898 (1989).CrossRefGoogle Scholar
12Parkinson, J.R.J. Phys. C. 2 2012 (1969).CrossRefGoogle Scholar