Skip to main content Accessibility help
×
Home

A 133Cs magic angle spinning nuclear magnetic resonance study of cesium environments in barium hollandites and Synroc

  • J. S. Hartman (a1), E. R. Vance (a2), W. P. Power (a3) and J. V. Hanna (a4)

Extract

Barium aluminum hollandite is a major phase in Synroc, a ceramic designed for the immobilization of high-level waste (HLW) from nuclear fuel reprocessing. Radioactive cesium substitutes into the channel sites, and such hollandites give 133Cs MAS nuclear magnetic resonance (NMR) spectra consisting of a single peak at 211 ppm in the absence of paramagnetic ions. However, the peak shifts to 640 ± 30 ppm and becomes extremely broad when Ti3+ replaces Al3+ in the channel walls of the hollandite structure, apparently because of Fermi contact interaction between the Cs nucleus and the unpaired electron of Ti3+. 133Cs MAS NMR of Synroc and hollandites is very sensitive to the presence of water-soluble CsAlTiO4 which would compromise the aqueous durability of Synroc. 133Cs MAS NMR spectra of Synroc-C, hot-pressed in metal bellows at temperatures as high as 1325 °C, do not indicate significant formation of CsAlTiO4. Synroc samples loaded with Cs and Sr only were shown by MAS NMR as well as electron microscopic techniques to be capable of incorporating nearly 10 wt.% Cs before CsAlTiO4 is formed.

Copyright

References

Hide All
1.Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., and Major, A., Nature 278, 219 (1979).
2.Ringwood, A. E., Kesson, S. E., Reeve, K. D., Woolfrey, J. L., and Ramm, E. J., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (Elsevier, Amsterdam, 1988), pp. 233334.
3.Solomah, A. G., Hare, T. M., and Palmour, H., Nucl. Technol. 49, 183 (1980).
4.Mendel, J. E., Ross, W. A., Roberts, F. P., Katayama, Y., Westsik, T., Turcotte, R., Wald, T., and Bradley, D., Annual Report on the Characteristics of High-Level Waste Glasses, Battelle Pacific Northwest Laboratory, Richland, WA, BNWL-2252 (1977).
5.Cheary, R. W., Acta Crystallogr. B42, 229 (1986);
Cheary, R. W. and Squadrito, R. M., Acta Crystallogr. B45, 205 (1989).
6.Cooper, J. A., Cousens, D. R., Lewis, R. A., Myhra, S., Segall, R. L., Smart, R. St. C., Turner, P. S., and White, T. J., J. Am. Ceram. Soc. 69, 347 (1986).
7.Kesson, S. E. and White, T. J., Proc. Roy. Soc. London, Ser. A 405, 73 (1986).
8.Akitt, J. W., The Alkali and Alkaline Earth Metals, Chapter 7 in Multinuclear NMR, edited by Mason, J. (Plenum Press, New York and London, 1987).
9.Fyfe, C. A., Solid State NMR for Chemists (CFC Press, Guelph, ON, Canada, 1983).
10.Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites (John Wiley & Sons, Chichester, 1987).
11.Blumich, B., Adv. Mater. 3, 237 (1991).
12.Eckert, H., Progr. NMR Spect. 24, 159 (1992).
13.Power, W. P., Mooibroek, S., Wasylishen, R. E., and Cameron, T. S., J. Phys. Chem. 98, 1552 (1994), and references therein. See especially Figure 7 which summarizes 133Cs chemical shift ranges.
14.Weiss, C. A. Jr., Kirkpatrick, R. J., and Altaner, S. P., Geochim. Cosmochim. Acta 54, 1655 (1990).
15.Weiss, C. A. Jr., Kirkpatrick, R. J., and Altaner, S. P., Am. Mineral. 75, 970 (1990).
16.Sherriff, B. L., Grundy, H. D., Hartman, J. S., Hawthorne, F. C., and Cerny, P., Can. Mineral. 29, 271 (1991).
17.Teertstra, D. K., Sherriff, B. L., Xu, Z., and Cerny, P., Can. Mineral. 32, 69 (1994).
18.Kim, Y., Kirkpatrick, R. J., and Cygan, R. T., Geochim. Cosmochim. Acta 60, 4059 (1996).
19.Wagner, M. J., Huang, R. H., Eglin, J. L., and Dye, J. L., Nature 368, 726 (1994).
20.Dawes, S. B., Eglin, J. L., Moeggenborg, K. J., Kim, J., and Dye, J. L., J. Am. Chem. Soc. 113, 1605 (1991).
21.Hartman, J. S. and Vance, E. R., J. Mater. Res. 9, 1714 (1994).
22.Engelhardt, G., Feuerstein, M., Sieger, P., Markgraber, D., Stucky, G., and Srdanov, V., Chem. Commun., 729 (1996).
23.Morgan, K. R., Collier, S., Burns, G., and Ooi, K., J. Chem. Soc., Chem. Commun., 1719 (1994).
24.Cheetham, A. K., Dobson, C. M., Grey, C. P., and Jakeman, R. J. B., Nature 328, 706 (1987).
25.Grey, C. P., Dobson, C. M., Cheetham, A. K., and Jakeman, R. J. B., J. Am. Chem. Soc. 111, 505 (1989).
26.Nayeem, A. and Yesinowski, J. P., J. Chem. Phys. 89, 4600 (1988).
27.Hart, K. P., Vance, E. R., Day, R. A., and Begg, B. D., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), pp. 281287.

A 133Cs magic angle spinning nuclear magnetic resonance study of cesium environments in barium hollandites and Synroc

  • J. S. Hartman (a1), E. R. Vance (a2), W. P. Power (a3) and J. V. Hanna (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed