Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-kknlk Total loading time: 0.314 Render date: 2022-01-23T08:28:07.953Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Probabilistic corpus-based dialectometry

Published online by Cambridge University Press:  16 August 2018

Christoph Wolk*
Affiliation:
University of Giessen, Giessen, Germany
Benedikt Szmrecsanyi
Affiliation:
KU Leuven, Leuven, Belgium
*
*Address for correspondence: Otto-Behaghel-Straße 10 B 403, 35394 Giessen, Germany, +49 641 - 99 301 53, christoph.b.wolk@anglistik.uni-giessen.de

Abstract

Researchers in dialectometry have begun to explore measurements based on fundamentally quantitative metrics, often sourced from dialect corpora, as an alternative to the traditional signals derived from dialect atlases. This change of data type amplifies an existing issue in the classical paradigm, namely that locations may vary in coverage and that this affects the distance measurements: pairs involving a location with lower coverage suffer from greater noise and therefore imprecision. We propose a method for increasing robustness using generalized additive modeling, a statistical technique that allows leveraging the spatial arrangement of the data. The technique is applied to data from the British English dialect corpus FRED; the results are evaluated regarding their interpretability and according to several quantitative metrics. We conclude that data availability is an influential covariate in corpus-based dialectometry and beyond, and recommend that researchers be aware of this issue and of methods to alleviate it.

Type
Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldenderfer, Mark S. & Blashfield, Roger K.. 1984. Cluster analysis. London: Sage Publications.CrossRefGoogle Scholar
Anderwald, Lieselotte & Szmrecsanyi, Benedikt. 2009. Corpus linguistics and dialectology. In Lüdeling, Anke & Merja Kytö (eds.), Corpus linguistics: An international handbook, Handbücher Zur Sprach- Und Kommunikationswissenschaft /Handbooks of Linguistics and Communication Science 29(1), 1126–39. Berlin: Mouton de Gruyter.Google Scholar
Branigan, Holly. 2007. Syntactic priming. Language and Linguistics Compass 1(1/2). 1-16. doi: 10.1111/j.1749-818X.2006.00001.x.CrossRefGoogle Scholar
Britain, David. 2010. Grammatical variation in the contemporary spoken English of England. In Kirkpatrick, Andy (ed.), The handbook of world Englishes, 37-58. London: Routledge.Google Scholar
Bybee, Joan L. 2010. Language, usage and cognition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chambers, Jack K. & Trudgill, Peter. 1998. Dialectology, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cheshire, Jenny, Edwards, Viv & Whittle, Pamela. 1989. Urban British dialect grammar: the question of dialect levelling. English World-Wide 10. 185-225.CrossRefGoogle Scholar
Eisenstein, Jacob. 2018. Identifying regional dialects in on‐line social media. In Boberg, Charles, John Nerbonne & Dominic Watts (eds.), The handbook of dialectology. New York: Wiley-Blackwell.Google Scholar
Goebl, Hans. 1977. Rätoromanisch versus Hochitalienisch versus Oberitalienisch. Ladinia 1. 39-71.Google Scholar
Goebl, Hans. 1982. Dialektometrie: Prinzipien und methoden des einsatzes der numerischen taxonomie im bereich der dialektgeographie. Wien: Österreichische Akademie der Wissenschaften.Google Scholar
Goebl, Hans. 1984. Dialektometrische studien: Anhand Italoromanischer, Rätoromanischer Und Galloromanischer sprachmaterialien aus AIS und ALF. Tübingen: Niemeyer.Google Scholar
Goebl, Hans. 1993. Dialectometry: A short overview of the principles and practice of quantitive classification of linguistic atlas data. In Köhler, Reinhard & Burghard Rieger (eds.), Contributions to Quantitative Linguistics: Proceedings of the First International Conference on Quantitative Linguistics, QUALICO, Trier, 1991, 277–315. Dordrecht: Kluwer.Google Scholar
Goebl, Hans. 2007. A bunch of dialectometric flowers: A brief introduction to dialectometry. In Smit, Ute, Stefan Dollinger, Julia Hüttner, Gunter Kaltenböck & Ursula Lutzky (eds.), Tracing English through time: Explorations in language variation, 133-172. Wien: Braumüller.Google Scholar
Great Britain Historical GIS Project. 2004. Great Britain Historical GIS. University of Portsmouth.Google Scholar
Gries, Stefan Th. 2012. Frequencies, probabilities, and association measures in usage-/exemplar-based linguistics: Some necessary clarifications. Studies in Language 36(3). 477-510.Google Scholar
Grieve, Jack. 2014. A comparison of statistical methods for the aggregation of regional linguistic variation. In Szmrecsanyi, Benedikt & Bernhard Wälchli (eds.), Aggregating dialectology, typology, and register analysis: Linguistic variation in text and speech, Lingua & Litterae 2853-2888. Berlin: Walter de Gruyter.Google Scholar
Grieve, Jack. 2016. Regional variation in written American English. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Heeringa, Wilbert. 2004. Measuring dialect pronunciation differences using Levenshtein distance. Groningen, Netherlands: University of Groningen dissertation.Google Scholar
Hilbe, Joseph M. 2007. Negative binomial regression. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hernández, Nuria. 2006. User’s guide to FRED. Freiburg: University of Freiburg.Google Scholar
Huang, Yuan, Guo, Diansheng, Kasakoff, Alice & Grieve, Jack. 2016. Understanding US regional linguistic variation with Twitter data analysis. Computers, Environment and Urban Systems 59. 244-255.CrossRefGoogle Scholar
Jain, Anil K., Murty, M. Narasimha & Flynn, Patrick J.. 1999. Data clustering: A review. ACM Computing Surveys 31(3). 264-323.CrossRefGoogle Scholar
James, Gareth, Witten, Daniela, Hastie, Trevor & Tibshirani, Robert. 2013. An introduction to statistical learning: With applications in R. New York: Springer.CrossRefGoogle Scholar
Jankowski, Bridget. 2004. A transatlantic perspective of variation and change in English deontic modality. Toronto Working Papers in Linguistics 23(2). 85-113.Google Scholar
Kortmann, Bernd & Szmrecsanyi, Benedikt. 2004. Global synopsis: Morphological and syntactic variation in English. In Bernd Kortmann, Edgar Schneider, Kate Burridge, Rajend Mesthrie & Clive Upton (eds.), A Handbook of varieties of English vol. 2. 1142-1202. Berlin: Mouton de Gruyter.Google Scholar
Kortmann, Bernd & Christoph Wolk. 2012. Morphosyntactic Variation in the Anglophone World: A Global Perspective. In Bernd Kortmann & Kerstin Lunkenheimer (eds.), The Mouton World Atlas of Variation in English. 906-936. Berlin: De Gruyter Mouton.Google Scholar
Labov, William. 2001. Principles of Linguistic Change, Vol. 2: Social Factors. Oxford: Blackwell.Google Scholar
Manning, Chris & Schütze, Hinrich. 1999. Foundations of statistical natural language processing. Cambridge, MA: MIT Press.Google Scholar
Nerbonne, John. 2009. Data-driven dialectology. Language and Linguistics Compass 3(1). 175-198.CrossRefGoogle Scholar
Nerbonne, John. 2010. Measuring the diffusion of linguistic change. Philosophical Transactions of the Royal Society B: Biological Sciences 365. 3821-3828.CrossRefGoogle ScholarPubMed
Nerbonne, John & Kleiweg, Peter. 2007. Toward a dialectological yardstick. Journal of Quantitative Linguistics 14(2). 148-166.CrossRefGoogle Scholar
Nerbonne, John, Heeringa, Wilbert & Kleiweg, Peter. 1999. Edit distance and dialect proximity. In David Sankoff & Joseph B. Kruskal (eds.), Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison. Stanford: CSLI Press.Google Scholar
Nerbonne, John, Kleiweg, Peter, Manni, Franz & Heeringa, Wilbert. 2008. Projecting dialect differences to geography: Bootstrapping clustering vs. clustering with noise. In Christine Preisach, Lars Schmidt-Thieme, Hans Burkhardt & Reinhold Decker (eds.), Data analysis, machine learning, and applications. Proceedings of the 31st Annual Meeting of the German Classification Society, 647-654. Berlin: Springer.CrossRefGoogle Scholar
Orton, Harold, Sanderson, Stewart & Widdowson, J. D. A.. 1978. The Linguistic Atlas of England. London: Croom Helm.Google Scholar
Pickl, Simon, Spettl, Aaron, Pröll, Simon, Elspaß, Stephan, König, Werner & Schmidt, Volker. 2014. Linguistic distances in dialectometric intensity estimation. Journal of Linguistic Geography 2(1). 25-40.CrossRefGoogle Scholar
Sankoff, David. 1987. Variable Rules. In Ulrich Ammon, Norbert Dittmar & Klaus J. Mattheier (eds.), Sociolinguistics / Soziolinguistik: An International Handbook / Ein internationales Handbuch, Vol.2, 984-997. Berlin: de Gruyter.Google Scholar
Séguy, Jean. 1971. La relation entre la distance spatiale et la distance lexicale. Revue de Linguistique Romane 35. 335-357.Google Scholar
Shackleton, R. G. 2007. Phonetic variation in the traditional English dialects: A computational analysis. Journal of English Linguistics 35(1). 30-102. doi: 10.1177/0075424206297857.CrossRefGoogle Scholar
Spruit, Marco René. 2006. Measuring syntactic variation in Dutch dialects. Literary and Linguistic Computing 21(4). 493-506.CrossRefGoogle Scholar
Spruit, Marco Wilbert Heeringa, René, & Nerbonne, John. 2009. Associations among linguistic levels. Lingua 119(11). 1624-1642. doi: 10.1016/j.lingua.2009.02.001.CrossRefGoogle Scholar
Streck, Tobias. 2014. Alemannisch quantitativ. Zur Erklärungskraft der Geografie für aggregierte Dialektunterschiede. In Pia Bergmann, Karin Birkner, Peter Gilles, Helmut Spiekermann & Tobias Streck (eds.), Sprache im Gebrauch: Räumlich, zeitlich, interaktional. Festschrift für Peter Auer, 157-173. Heidelberg: Winter (OraLingua 9).Google Scholar
Szmrecsanyi, Benedikt. 2006. Morphosyntactic persistence in spoken English: A corpus study at the intersection of variationist sociolinguistics, psycholinguistics, and discourse analysis. Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
Szmrecsanyi, Benedikt. 2008. Corpus-based dialectometry: Aggregate morphosyntactic variability in British English dialects. International Journal of Humanities and Arts Computing 2(1/2). 279-296.CrossRefGoogle Scholar
Szmrecsanyi, Benedikt. 2010. The morphosyntax of BrE dialects in a corpus-based dialectometrical perspective: Feature extraction, coding protocols, projections to geography, summary statistics. Freiburg: University of Freiburg. URN: urn:nbn:de:bsz:25-Opus-73209, URL: http://www.freidok.uni-freiburg.de/volltexte/7320/.Google Scholar
Szmrecsanyi, Benedikt. 2011. Corpus-based dialectometry: A methodological sketch. Corpora 6(1). 45-76.CrossRefGoogle Scholar
Szmrecsanyi, Benedikt. 2013. Grammatical variation in British English dialects: A study in corpus-based dialectometry. Cambridge: Cambridge University Press.Google Scholar
Szmrecsanyi, Benedikt & Hernández, Nuria. 2007. Manual of information to accompany the Freiburg Corpus of English Dialects Sampler (“FRED-S”). Freiburg: University of Freiburg. http://www.freidok.uni-freiburg.de/volltexte/2859/.Google Scholar
Szmrecsanyi, Benedikt & Wälchli, Bernhard. eds. 2014. Aggregating dialectology, typology, and register analysis: Linguistic variation in text and speech. Lingua & Litterae. 28 Berlin: Walter de Gruyter.CrossRefGoogle Scholar
Szmrecsanyi, Benedikt & Wolk, Christoph. 2011. Holistic corpus-based dialectology. Brazilian Journal of Applied Linguistics/Revista Brasileira de Linguística Aplicada 11(2). 561-592.CrossRefGoogle Scholar
Tagliamonte, Sali. 2004. Have to, gotta, must: Grammaticalisation, variation and specialization in English deontic modality. In Christian Mair & Hans Lindquist (eds.), Corpus approaches to grammaticalization in English, 33-55. Amsterdam: Benjamins.CrossRefGoogle Scholar
Tagliamonte, Sali A., Durham, Mercedes & Smith, Jennifer. 2014. Grammaticalization at an early stage: future be going to in conservative British dialects. English Language and Linguistics 18(1). 75-108.CrossRefGoogle Scholar
Tobler, Waldo. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2). 234-240.CrossRefGoogle Scholar
Trudgill, Peter. 1999. The dialects of England, 2nd edn. Oxford: Blackwell.Google Scholar
Viereck, Wolfgang. The Computerisation and quantification of linguistic data: Dialectometrical methods. In Alan R. Thomas (ed.), Methods in Dialectology : Proceedings of the Sixth International Conference Held At the University College of North Wales, 3rd-7th August 1987. 523-550. Clevedon: Multilingual Matters.Google Scholar
Viereck, Wolfgang, Ramisch, Heinrich, Händler, Harald, Hoffmann, Petra & Putschke, Wolfgang. 1991. The Computer Developed Linguistic Atlas of England. Tübingen: Niemeyer.Google Scholar
Ward, Joe H. Jr. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58. 236-244.CrossRefGoogle Scholar
Wieling, Martijn, Montemagni, Simonetta, Nerbonne, John & Baayen, R. Harald. 2014. Lexical differences between Tuscan dialects and standard Italian: Accounting for geographic and sociodemographic variation using generalized additive mixed modeling. Language 90(3). 669-692.CrossRefGoogle Scholar
Wieling, Martijn, Nerbonne, John & Baayen, R. Harald. 2011. Quantitative social dialectology: Explaining linguistic variation geographically and socially. PLoS ONE 6(9).CrossRefGoogle ScholarPubMed
Wolk, Christoph. 2014. Integrating aggregational and probabilistic approaches to language variation. Freiburg: University of Freiburg dissertation.Google Scholar
Wolk, Christoph & Szmrecsanyi, Benedikt. 2016. Top-down and bottom-up advances in corpus-based dialectometry. In Marie-Hélène Côté, Remco Knooihuizen & John Nerbonne (eds.), The future of dialects, 225-244. Berlin: Language Science Press.Google Scholar
Wood, Simon N. 2006. Generalized additive models: an introduction with R. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 1

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 16 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 2

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 16 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 3

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 10 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 4

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 10 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 5

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 9 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 6

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 10 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 7

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 8

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 9

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 10

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 11

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 12

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 13

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 14

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 15

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 16

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 17

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 18

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 19

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 20

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 22

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 22

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 23

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 25 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 24

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 10 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 25

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 9 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 26

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 10 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 27

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 10 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 28

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 29

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 30

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 31

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 32

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 33

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 34

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 35

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 37

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 38

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 39

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 40

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 41

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 42

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 43

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 44

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 45

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 46

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 47

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 48

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 49

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 50

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 51

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 52

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 53

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 54

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 55

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 13 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 56

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 14 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 57

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 58

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 59

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
Supplementary material: Image

Wolk and Szmrecsanyi supplementary material

Wolk and Szmrecsanyi supplementary material 60

Download Wolk and Szmrecsanyi supplementary material(Image)
Image 15 MB
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Probabilistic corpus-based dialectometry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Probabilistic corpus-based dialectometry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Probabilistic corpus-based dialectometry
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *