Skip to main content Accessibility help

Thymoquinone treatment for inner-ear acoustic trauma in rats

  • F Aksoy (a1), R Dogan (a2), A Yenigun (a3), B Veyseller (a1), O Ozturan (a1) and B Ozturk (a4)...



To investigate whether thymoquinone has any eliminative effects against inner-ear damage caused by acoustic trauma.


Thirty-two male rats were divided into four groups. Group 1 was only exposed to acoustic trauma. Group 2 was given thymoquinone 24 hours before acoustic trauma and continued to receive it for 10 days after the trauma. Group 3 was only treated with thymoquinone, for 10 days. Group 4, the control group, suffered no trauma and received saline instead of thymoquinone. Groups 1 and 2 were exposed to acoustic trauma using 105 dB SPL white noise for 4 hours.


There was a significant decrease in distortion product otoacoustic emission values and an increase in auditory brainstem response thresholds in group 1 on days 1, 5 and 10, compared with baseline measurements. In group 2, a decrease in distortion product otoacoustic emission values and an increase in auditory brainstem response threshold were observed on day 1 after acoustic trauma, but measurements were comparable to baseline values on days 5 and 10. In group 3, thymoquinone had no detrimental effects on hearing. Similarly, the control group showed stable results.


Thymoquinone was demonstrated to be a reparative rather than preventive treatment that could be used to relieve acoustic trauma.


Corresponding author

Address for correspondence: Dr Alper Yenigun, Otorhinolaryngology Clinic, Karaman State Hospital, Turgut Özal Street No: 1, Karaman 70200, Turkey Fax: +90 338 226 33 09 E-mail:


Hide All
1Mulroy, MJ, Henry, WR, McNeil, PL. Noise-induced transient microlesions in the cell membranes of auditory hair cells. Hear Res 1998;115:93100
2Miller, JM, Ren, TY, Dengerink, HA, Nuttall, AL. Cochlear blood flow changes with short sound stimulation. In: Axelsson, A, Borchgrevink, HM, Hamernik, RP, Hellstrom, PA, Henderson, D, Salvi, RJ, eds. Scientific Basis of Noise-induced Hearing Loss. New York: Thieme Medical, 1996;95109
3Ohlemiller, KK, McFadden, SL, Ding, DL, Lear, PM, Ho, YS. Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 2000;1:243–54
4Saunders, JC, Dear, SP, Schneider, ME. The anatomical consequences of acoustic injury: a review and tutorial. J Acoust Soc Am 1985;78:833–60
5Miller, JM, Yamashita, D, Minami, S, Yamasoba, T, Le Prell, CG. Mechanisms and prevention of noise-induced hearing loss [in Japanese]. Otology Japan 2006;16:139–53
6Van Campen, LE, Murphy, WJ, Franks, JR, Mathias, PI, Toraason, MA. Oxidative DNA damage is associated with intense noise exposure in the rat. Hear Res 2002;164:2938
7Ohinata, Y, Miller, JM, Altschuler, RA, Schacht, J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 2000;878:163–73
8Miller, JM, Brown, JN, Schacht, J. 8-iso-prostaglandin F (2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 2003;8:207–21
9Casetta, I, Govoni, V, Granieri, E. Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm Des 2005;11:2033–52
10Yamashita, D, Jiang, HY, Schacht, J, Miller, JM. Delayed production of free radicals following noise exposure. Brain Res 2004;1019:201–9
11Yamane, H, Nakai, Y, Takayama, M, Iqucgi, H, Nakaqawa, T, Kojima, A. Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol 1995;252:504–8
12Henderson, D, Bielefeld, EC, Harris, KC, Hu, BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear 2006;27:119
13Ramadan, MF. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. Int J Food Sci Technol 2007;42:1208–18
14Arslan, SO, Gelir, E, Armutcu, F, Coskun, O, Grel, A, Sayan, H et al. The protective effect of thymoquinone on ethanol-induced acute gastric damage in the rat. Nutr Res 2005;25:673–80
15Dehkordi, FR, Kamkhah, AF. Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fundam Clin Pharmacol 2008;22:447–52
16Vanamala, J, Kester, AC, Heuberger, AL, Reddivari, L. Mitigation of obesity-promoted diseases by Nigella sativa and thymoquinone. Plant Foods Hum Nutr 2012;67:111–19
17Hosseinzadeh, H, Parvardeh, S, Asl, MN, Sadeqhnia, HR, Ziaee, T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia reperfusion injury in rat hippocampus. Phytomedicine 2007;14:621–7
18Badary, OA, Taha, RA, Gamal el-Din, AM, Abdel-Wahab, MH. Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 2003;26:8798
19Tesarova, H, Svobodova, B, Kokoska, L, Marsik, P, Pribylova, M, Landa, P et al. Determination of oxygen radical absorbance capacity of black cumin (Nigella sativa) seed quinone compounds. Nat Prod Commun 2011;6:213–16
20Wang, Y, Hirose, K, Liberman, MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 2002;3:248–68
21Bogoyevitch, MA, Boehm, I, Oakley, A, Ketterman, AJ, Barr, RK. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim Biophys Acta 2004;1697:89101
22Hu, BH, Henderson, D, Nicotera, TM. Progression of outer hair cell death in the chinchilla cochlea following traumatic noise exposure. In: Simmons, DD, Palmer, C, eds. Seminars in Hearing. New Frontiers in the Amelioration of Hearing Loss: Part 2 Hair Cell Development, Regeneration, Protection, and Rescue, vol 24. New York: Thieme Medical, 2003;111–14
23Hu, BH, Henderson, D, Nicotera, TM. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 2002;166:6271
24Yang, WP, Henderson, D, Hu, BH, Nicotera, TM. Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hear Res 2004;196:6976
25Gali-Muhtasib, H, Diab-Assaf, M, Boltze, C, Al-Hmaira, J, Hartiq, R, Roessner, A et al. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a 53–dependent mechanism. Int J Oncol 2004;25:857–66
26Sankaranarayanan, C, Pari, L. Thymoquinone ameliorates chemical induced oxidative stress and β-cell damage in experimental hyperglycemic rats. Chem Biol Interact 2011;190:148–54
27Shoji, F, Miller, AL, Mitchell, A, Yamasoba, T, Altschuller, RA, Miller, JM. Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss. Hear Res 2000;146:3442
28Kopke, RD, Weisskopf, PA, Boone, JL, Jackson, RL, Wester, DC, Hoffer, ME et al. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear Res 2000;149:138–46
29Le Prell, CG, Hughes, LF, Miller, JM. Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 2007;42:1454–63
30Duan, M, Qiu, J, Laurell, G, Olofsson, A, Counter, SA, Borq, E. Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma. Hear Res 2004;192:19
31Khalife, KH, Lupidi, G. Reduction of hypervalent states of myoglobin and hemoglobin to their ferrous forms by thymoquinone: the role of GSH, NADH and NADPH. Biochim Biophys Acta 2008;1780:627–37



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed