Skip to main content Accessibility help

Surviving cochlear function in the presence of auditory nerve agenesis

  • S. J. O'Leary (a1) and W. P. Gibson (a2)


This case reports electrophysiological evidence for cochlear function in a child with radiological evidence of bilateral auditory nerve agenesis or severe hypoplasia. The diagnosis of auditory nerve agenesis was supported by a bilateral atresia of internal auditory canals on computed tomography (CT) scan and magnetic resonance imaging (MRI) absent auditory brainstem responses and absent behavioural responses to sound. Despite the apparent absence of an auditory nerve or spiral ganglion, electrocochleography revealed surviving cochlear function at 70–80 db HL and an abnormal electrocochleographic waveform. This case demonstrates that cochlear function may develop without afferent, or efferent innervation. It also emphasizes that cochlear function may occur in the presence of profound deafness.


Corresponding author

Address for correspondence: Stephen O'Leary, Department of Otolaryngology, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia.


Hide All
Aso, S., Gibson, W. P. (1994) Electrocochleography in profoundly deaf children: comparison of promontory and round window techniques. American Journal of Otology 15: 376379.
Chisin, R., Perlman, M., Sohmer, H. (1979) Cochlear and brainstem responses in hearing loss following neonatal hyperbilirubinemia. Annals of Otology 88: 352357.
Corwin, J. T., Cotanche, D. A. (1989) Development of location-specific hair cell stereocilia in denervated embryonic ears. Journal of Comparative Neurology 288: 529537.
Deltenre, P., Mansbach, A. L., Bozer, C., Clercx, A., Hecox, K. E. (1997) Auditory neuropathy: a report on three cases with early onsets and major neonatal illnesses. Electroencephalography and ClinicalNeurophysiology 104: 1722.
Guirado, C. R. (1992) Internal auditory meatal malformations. Revue de Laryngologie 113: 419421.
Konradsson, K. S. (1996) Bilaterally presented otoacoustic emissions in four children with profound idiopathic unilateral sensorineural hearing loss. Audiology 35: 217227.
Mansbach, A. L, Deltenre, P., Pelc, P., Marquet, T. (1998) Auditory neuropathy. Abstracts, 7th International Congress Paediatric OtolaryngologyHelsinkiJune 1998, p 280.
Moore, D. R. (1990) Auditory brainstem of the ferret: early cessation of developmental sensitivity of neurons in the cochlear nucleus to removal of the cochlea. Journal of Comparative Neurology 302: 810823.
Starr, A., Picton, T. W., Sininger, Y., Hood, L. J., Berlin, C. I. (1996) Auditory neuropathy. Brain 119: 741753.
Van De Water, T. R. (1986) Determinants of neurons-sensory receptor cell interaction during development of the inner ear. Hearing Research 22: 265277.
Van De Water, T. R. (1988) Tissue interactions and cell differentiation: neurone-sensory cell interaction during otic development. Development (Suppl 103): 185193.
Van De Water, T. R., Galinovic-Schwartz, V., Ruben, R. J.(1989) Neuron-receptor cell interaction during development ofthe inner ear. A heterochronic ganglion study. Acta Oto-Laryngologica 107: 412–412.
Vivnaud, J., Jardin, C., Rosen, L. (1986) The Ear, Masson Pub. USA: pp 115116.
Wong, S.H.-W., Gibson, W. P., Sanli, H. (1997) Use of transtympanic round window electrocochleography for threshold estimations in children. American Journal of Otology 18: 632636.


Surviving cochlear function in the presence of auditory nerve agenesis

  • S. J. O'Leary (a1) and W. P. Gibson (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed