Skip to main content Accessibility help
×
Home

Postauricular hypodermic injection to treat inner ear disorders: experimental feasibility study using magnetic resonance imaging and pharmacokinetic comparison

  • J Li (a1), L Yu (a1), R Xia (a2), F Gao (a2), W Luo (a3) and Y Jing (a1)...

Abstract

Background:

To investigate the feasibility of postauricular hypodermic injection for treating inner ear disorders, we compared perilymph pharmacokinetics for postauricular versus intravenous injection, using magnetic resonance imaging, in an animal model.

Methods:

Twelve albino guinea pigs were divided randomly into two groups and administered gadopentetate dimeglumine via either a postauricular or an intravenous bolus injection. A 7.0 Tesla magnetic resonance imaging system was used to assess the signal intensities of gadolinium-enhanced images of the cochlea, as a biomarker for changes in gadopentetate dimeglumine concentration in the perilymph. Pharmacokinetic parameters were calculated based on these signal intensity values.

Results:

Guinea pigs receiving postauricular injection showed longer times to peak signal intensity, longer elimination half-life, longer mean residence time and a greater area under the signal–time curve (from pre-injection to the last time point) (p < 0.05).

Conclusion:

Postauricular injection shows potential as an efficient drug delivery route for the treatment of inner ear disorders.

Copyright

Corresponding author

Address for correspondence: Dr Lisheng Yu, 11 Xizhimen South Street, Xicheng District, Beijing City, 100044, China Fax: +86 10 68318386 E-mail: yulish68@yahoo.com.cn

References

Hide All
1Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 2010;342:2130
2Borkholder, DA, Zhu, X, Hyatt, BT, Archilla, AS, Livingston, WJ 3rd, Frisina, RD. Murine intracochlear drug delivery: reducing concentration gradients within the cochlea. Hear Res 2010;268:211
3Yang, XQ, Yu, LS, Ma, X. Postaurical injection of compound betamethasone to treat the intractable low-frequency sensorineural hearing loss [in Chinese]. Chin J Otorhinolaryngol Head Neck Surg 2007:42:814–16
4Lin, YJ, Yu, LS. Determination of dexamethasone in the cochlear tissue after postaurical and intramuscular injection [in Chinese]. Chin Arch Otolaryngol Head Neck Surg 2009;7:381384
5Counter, SA, Zou, J, Bjelke, B, Klason, T. 3D MRI of the in vivo vestibule-cochlea labyrinth during Gd-DTPA-BMA uptake. Neuroreport 2003;14:1707–12
6Zhang, Y, Huo, M, Zhou, J, Xie, S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed 2010;99:306–14
7Zou, J, Pyykkö, I, Counter, SA, Klason, T, Bretlau, P, Bjelke, B. In vivo observation of dynamic perilymph formation using 4.7 T MRI with gadolinium as a tracer. Acta Otolaryngol 2003;123:910–15
8Mynatt, R, Hale, SA, Gill, RM, Plontke, SK, Salt, AN. Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex. J Assoc Res Otolaryngol 2006;7:182–93
9Hamid, M, Trune, D. Issues, indications, and controversies regarding intratympanic steroid perfusion. Curr Opin Otolaryngol Head Neck Surg 2008;16:434–40
10Juhn, SK. Barrier systems in the inner ear. Acta Otolaryngol Suppl 1988;458:7983
11Moskowitz, D, Lee, KJ, Smith, HW. Steroid use in idiopathic sudden sensorineural hearing loss. Laryngoscope 1984;94:664–6
12Goycoolea, MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol 2001;121:437–47
13Mikulec, AA, Hartsock, JJ, Salt, AN. Permeability of the round window membrane is influenced by the composition of applied drug solutions and by common surgical procedures. Otol Neurotol 2008;29:1020–6
14Yoshioka, M, Naganawa, S, Sone, M, Nakata, S, Teranishi, M, Nakashima, T. Individual differences in the permeability of the round window: evaluating the movement of intratympanic gadolinium into the inner ear. Otol Neurotol 2009;30:645–8
15Alzamil, KS, Linthicum, FH Jr.Extraneous round window membranes and plugs: possible effect on intratympanic therapy. Ann Otol Rhinol Laryngol 2000;109:30–2
16Swan, EE, Mescher, MJ, Sewell, WF, Tao, SL, Borenstein, JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008;14:1583–99
17Plontke, SK, Mikulec, AA, Salt, AN. Rapid clearance of methylprednisolone after intratympanic application in humans. Otol Neurotol 2008;29:732–3
18Salt, AN, Plontke, SK. Principles of local drug delivery to the inner ear. Audiol Neurotol 2009;14:350–60
19Jing, YY, Yu, LS, Li, XQ. Compound betameth pharmacokinetics in plasma of guinea pig after postaurieal injection [in Chinese]. J Audiol Speech Pathol 2009;17:354357
20Zou, J, Zhang, W, Poe, D, Qin, J, Fornara, A, Zhang, Y et al. MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine (Lond) 2010;5:739–54
21Counter, SA, Bjelke, B, Borg, E, Klason, T, Chen, Z, Duan, ML. Magnetic resonance imaging of the membranous labyrinth during in vivo gadolinium (Gd-DTPA-BMA) uptake in the normal and lesioned cochlea. Neuroreport 2000;11:3979–83
22Plontke, SK, Salt, AN. Simulation of application strategies for local drug delivery to the inner ear. ORL J Otorhinolaryngol Relat Spec 2006;68:386–92
23Lyford-Pike, S, Vogelheim, C, Chu, E, Della Santina, CC, Carey, JP. Gentamicin is primarily localized in vestibular type I hair cells after intratympanic administration. J Assoc Res Otolaryngol 2007;8:497508
24Lattuada, L, Gabellini, M. Straightforward synthesis of a novel maleimide-DTPA bifunctional chelating agent. Synth Commun 2005;35:2409–13
25Takumida, M, Anniko, M. Localization of endotoxin in the inner ear following inoculation into the middle ear. Acta Otolaryngol 2004;124:772–7

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed