Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Network analysis of Innate Immune Interaction in Cholesteatoma
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Network analysis of Innate Immune Interaction in Cholesteatoma
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Network analysis of Innate Immune Interaction in Cholesteatoma
        Available formats
        ×
Export citation

Learning Objectives: Innate Immunity, Cholesteatoma, Network Analysis, Regulatory Network.

Introduction: The etiopathogenesis of Cholesteatoma is controversial, but it is associated with recurrent, persistent ear infections and bacteria. Thereby the interaction between pathogen susceptibility and innate immunity is relevant. Toll-like (TLRs) and Nod-like receptors (Nods) are known to be important participants in the innate immune response to pathogens at other sites, via elaboration of inflammatory cytokines. We explored the network of Innate Immune Receptor-signalling and cytokine production in cholesteatoma.

Methods: Cholesteatoma and control tissue of the external auditory canal skin (EAS) from patients undergoing surgery were evaluated for innate immune pattern and molecules. Cholesteatoma thickness and cellular infiltration were evaluated histologically. mRNA expression of receptors and downstream molecules were evaluated by microarray, real-time PCR, while protein levels were determined by Immunhistochemistry and bioinformatical network analysis.

Results: A subset of receptors involved and downstream molecules in Innate Immunity such as TLRs, Nods and TNF are expressed in cholesteatoma. NOD2 mRNA and protein, but not TLRs or Nod-receptors were significantly induced compared to control samples of the external auditory canal skin (EAS). Moreover, regulation of genes in an interaction network of the RIPK2 was detected. In addition to NOD2, NLRC4, PYCARD, the downstream molecules IRAK1 and anti-apoptotic regulator CFLAR, showed significant upregulation, whereas SMAD3, a pro-apoptotic inducer, was significantly downregulated.

Conclusions: The network interaction of innate immune regulation is important in the etiopathogenesis and growth of cholesteatoma.