Skip to main content Accessibility help

Experimental study on the aetiology of benign paroxysmal positional vertigo due to canalolithiasis: comparison between normal and vestibular dysfunction models

  • K Otsuka (a1), M Negishi (a1), M Suzuki (a1), T Inagaki (a1), M Yatomi (a1), U Konomi (a1), T Kondo (a1) and Y Ogawa (a1)...



Using American bullfrog models under normal conditions and under vestibular dysfunction, we investigated whether mechanical vibration applied to the ear could induce otoconial dislodgement.


Vibration was applied to the labyrinth of the bullfrog using a surgical drill. The time required for the otoconia to dislodge from the utricular macula was measured. Vestibular dysfunction models were created and the dislodgement time was compared with the normal models. The morphology of the utricular macula was also investigated.


In the normal models, the average time for otoconial dislodgement to occur was 7 min and 36 s; in the vestibular dysfunction models, it was 2 min and 11 s. Pathological investigation revealed that the sensory hairs of the utricle were reduced in number and that the sensory cells became atrophic in the vestibular dysfunction models.


The otoconia of the utricle were dislodged into the semicircular canal after applying vibration. The time to dislodgement was significantly shorter in the vestibular dysfunction models than in the normal models; the utricular macula sustained significant morphological damage.


Corresponding author

Address for correspondence: Dr K Otsuka, Department of Otolaryngology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan Fax: +81 3 3346 9275 E-mail:


Hide All
1Suzuki, M, Harada, Y, Hirakawa, H, Hirakawa, K, Omura, R. An experimental study demonstrating the physiological polarity of the frog's utricle. Arch Otorhinolaryngol 1987;244:215–17
2Otsuka, K, Suzuki, M, Negishi, M, Shimizu, S, Inagaki, T, Konomi, U et al. Efficacy of physical therapy for intractable cupulolithiasis in an experimental model. J Laryngol Otol 2013;127:463–7
3Konomi, U, Suzuki, M, Otsuka, K, Shimizu, A, Inagaki, T, Hasegawa, G et al. Morphological change of the cupula due to an ototoxic agent: a comparison with semicircular canal pathology. Acta Otolaryngol 2010;130:652–8
4Viccaro, M, Mancini, P, La Gamma, R, De Seta, E, Covelli, E, Filipo, R. Positional vertigo and cochlear implantation. Otol Neurotol 2007;28:764–7
5Magliulo, G, Gagliardi, M, Cuiuli, G, Celebrini, A, Parrotto, D, D'Amico, R. Stapedotomy and post-operative benign paroxysmal positional vertigo. J Vestib Res 2005;15:169–72
6Dornhoffer, JL, Colvin, GB. Benign paroxysmal positional vertigo and canalith repositioning: clinical correlations. Am J Otol 2000;21:230–3
7Ichimura, A. Findings of positional nystagmus observed following tympanoplasty and cochlear implant [in Japanese]. Equilibrium Res 2001;60:105112
8Andaz, C, Whittet, HB, Ludman, H. An unusual cause of benign paroxysmal positional vertigo. J Laryngol Otol 1993;107:1153–4
9Flanagan, D. Labyrinthine concussion and positional vertigo after osteotome site preparation. Implant Dent 2004;13:129–32
10Galli, M, Petracca, T, Minozzi, F, Gallottini, L. Complications in implant surgery by Summer's technique: benign paroxysmal positional vertigo (BPPV). Minerva Stomatol 2004;53:535–41
11Kaplan, DM, Attal, U, Kraus, M. Bilateral benign paroxysmal positional vertigo following a tooth implantation. J Laryngol Otol 2003;117:312–13
12Nigam, A, Moffat, DA, Varley, EW. Benign paroxysmal positional vertigo resulting from surgical trauma. J Laryngol Otol 1989;103:203–4
13Peñarrocha, M, Pérez, H, Garciá, A, Guarinos, J. Benign paroxysmal positional vertigo as a complication of osteotome expansion of the maxillary alveolar ridge. J Oral Maxillofac Surg 2001;59:106–7
14Chiarella, G, Leopardi, G, De Fazio, L, Chiarella, R, Cassandro, E. Benign paroxysmal positional vertigo after dental surgery. Eur Arch Otorhinolaryngol 2008;265:119–22
15Amir, I, Young, E, Belloso, A. Self-limiting benign paroxysmal positional vertigo following use of whole-body vibration training plate. J Laryngol Otol 2010;124:796–8
16Dan-Goor, E, Samra, M. Benign paroxysmal positional vertigo after use of noise-canceling headphones. Am J Otolaryngol 2012;33:364–6
17Kachar, B, Parakkal, M, Frex, J. Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane. Hear Res 1990;45:179–90
18Lins, U, Farina, M, Kurc, M, Riordan, G, Thalmann, R, Thalmann, I et al. The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. J Struct Biol 2000;131:6778
19Nakai, Y, Masutani, H, Kato, A, Sugiyama, T. Observation of the otolithic membrane by low-vacuum scanning electron microscopy. ORL J Otorhinolaryngol Relat Spec 1996;58:912
20Karlberg, M, Hall, K, Quickert, N, Hinson, J, Halmagyi, GM. What inner ear diseases cause benign paroxysmal positional vertigo? Acta Otolaryngol 2000;120:380–5
21Katsarkas, A, Kirkham, TH. Paroxysmal positional vertigo – a study of 255 cases. J Otolaryngol 1978;7:320–30
22Baloh, RW, Honrubia, V, Jacobson, K. Benign positional vertigo: clinical and oculographic features in 240 cases. Neurology 1987;37:371–8
23Hughes, CA, Proctor, L. Benign paroxysmal positional vertigo. Laryngoscope 1997;107:607–13
24Inagaki, T, Yukawa, K, Ichimura, A, Hagiwara, A, Ogawa, Y, Kitajima, N et al. Clinical study of BPPV-like symptom associated with inner ear disease [in Japanese]. Equilibrium Res 2008;67:1823
25von Brevern, M, Radtke, A, Lezius, F, Feldmann, M, Ziese, T, Lempert, T et al. Epidemiology of benign paroxysmal positional vertigo: a population based study. J Neurol Neurosurg Psychiatry 2007;78:710–15



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed