Skip to main content Accessibility help

Chemiluminescence assay of reactive oxygen species in laryngeal cancer

  • T Baglam (a1), M Sari (a2), Z Mine Yazici (a2), M Yuksel (a3) and C Uneri (a2)...



This study aimed to evaluate the presence of reactive oxygen species in laryngeal cancer tissue, using a luminol-amplified chemiluminescence method.

Materials and methods:

Fourteen patients with histopathologically diagnosed laryngeal squamous cell carcinoma were enrolled. Patients with recurrent tumours or a history of prior chemotherapy or radiotherapy were excluded. Tissue specimens were harvested both from the tumour itself and from the neighbouring, apparently normal mucosa (immediately after tumour removal). Tissue specimens were washed with ice-cold saline solution and processed immediately, without storage. The level of reactive oxygen species was measured quantitatively by a luminol-amplified chemiluminescence method.


The mean luminol-amplified chemiluminescence values for tumour and control tissue were 140.52 (standard error of the mean 40.21) and 121.36 (standard error of the mean 35.33) relative light units/mg tissue, respectively. Furthermore, mean tumour and control luminol chemiluminescence values were compared for stage one and two tumours versus stage three and four tumours. Both the tumour and the control luminol chemiluminescence values for the latter tumour group were significantly higher than those for the former tumour group.


This study measured directly the levels of reactive oxygen species in samples of laryngeal cancer tissue and normal mucosa. Higher levels of reactive oxygen species were found in laryngeal cancer tissue, suggesting a relationship between reactive oxygen species and laryngeal cancer.


Corresponding author

Address for correspondence: Dr Tekin Baglam, Sahinbey Uygulama ve Arastırma Hastanesi, Kulak Burun Bogaz AD, 27100 Sahinbey, Gaziantep, Turkey. E-mail:


Hide All
1Koufman, JA, Burke, AJ. The etiology and pathogenesis of laryngeal carcinoma. Otolaryngol Clin North America 1997;30:119
2Kong, Q, Lillehei, KO. Antioxidant inhibitors for cancer therapy. Medical Hypothesis 1998;51:405–9
3Seven, A, Civelek, S, Inci, E, Inci, F, Korkut, N, Burcak, G. Evaluation of oxidative stress parameters in blood of patients with laryngeal carcinoma. Clin Biochem 1999;32:369–73
4Taysı, S, Uslu, C, Akçay, F, Sutbeyaz, MY. Malondialdehyde and nitric oxide levels in the plasma of patients with advanced laryngeal cancer. Surgery Today 2003;33:651–4
5Kalaycı, A, Ozturk, A, Ozturk, K, Karagozoglu, E, Dolanmaz, D. Superoxide dismutase and gluthatione peroxidase enzyme activity in larynx carcinoma. Acta Otolaryngol 2005;125:312–15
6Munnia, A, Amasio, ME, Peluso, M. Exocyclic malondialdehyde and aromatic DNA adducts in larynx tissues. Free Radical Biology & Medicine 2004;37:850–8
7Piyathilake, CJ, Bell, WC, Oelschlager, DK, Heimburger, DC, Grizzle, WE. The pattern of expression of Mn and Cu-Zn superoxide dismutase varies among squamous cell cancers of the lung, larynx, and oral cavity. Head Neck 2002;24:859–67
8Boveris, A, Cadenas, E, Reiter, R, Filipkowski, M, Nakase, Y, Chance, B. Organ chemiluminescence: non-invasive assay for oxidative radical reactions. Proc Natl Acad Sci U S A 1980;77:347–51
9Feig, DI, Reid, TM, Loeb, LA. Reactive oxygen species in tumorigenesis. Cancer Res 1994;54(suppl 7):1890–4
10Gutteridge, JM, Halliwell, B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990;15:129–35
11Van Dyke, K, Castranova, V, eds. Cellular Chemiluminescence. London: CRC Press, 1987;167
12Panda, K, Chattopadhyay, R, Chattopadhyay, D, Chatterjee, IB. Vitamin C prevents cigarette smoke-induced oxidative damage in vivo. Free Rad Biol Med 2000;29:115–24
13Uneri, C, Sarı, M, Baglam, T, Polat, S, Yuksel, M. Effects of vitamin E on cigarette smoke induced oxidative damage in larynx and lung. Laryngoscope 2006;116:97100


Chemiluminescence assay of reactive oxygen species in laryngeal cancer

  • T Baglam (a1), M Sari (a2), Z Mine Yazici (a2), M Yuksel (a3) and C Uneri (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed