Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T05:59:06.171Z Has data issue: false hasContentIssue false

Biofilms in chronic rhinosinusitis: systematic review and suggestions for future research

Published online by Cambridge University Press:  11 February 2011

J Keir*
Affiliation:
Department of Otolaryngology, Wirral University Teaching Hospital NHS Trust, Upton, UK
L Pedelty
Affiliation:
Department of Otolaryngology, Wirral University Teaching Hospital NHS Trust, Upton, UK
A C Swift
Affiliation:
ENT Department, University Hospital Aintree, Liverpool, UK
*
Address for correspondence: Mr J Keir, Department of Otolaryngology, Wirral University Teaching Hospital NHS Trust, Upton CH49 5PE, UK E-mail: jameskeir@hotmail.com

Abstract

Background:

A biofilm is a community of micro-organisms encased within a self-produced, extracellular, polymeric substance. The role of biofilms as a major pathological aetiology in chronic rhinosinusitis would help explain the clinical manifestation of the disease.

Objectives:

To examine the current evidence, and to discuss possible future research directions, in relation to biofilms and chronic rhinosinusitis.

Study design:

Systematic literature review.

Evaluation method:

Two assessors independently undertook critical appraisal of the studies identified by the literature search. Significant findings were incorporated into this review. The primary outcome assessed was the presence of biofilm in human mucosal biopsy samples taken from patients with chronic rhinosinusitis, and from healthy controls.

Results:

We identified 11 studies examining biofilm formation in human mucosal biopsy samples taken from patients with chronic rhinosinusitis.

Conclusion:

It is unlikely that biofilms occur in every case of chronic rhinosinusitis; consequently, the significance of ‘biofilm detection’ in some series should be considered carefully. Several authors have argued strongly for the use of confocal scanning laser microscopy with fluorescent in situ hybridisation probes as the ‘gold standard’ for biofilm imaging. This imaging modality should be combined with further investigation of the microbiology of chronic rhinosinusitis, and of the efficacy of traditional culture techniques used for pathogen identification.

Type
Review Article
Copyright
Copyright © JLO (1984) Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Costerton, W, Veeh, R, Shirtliff, M, Pasmore, M, Post, C, Ehrlich, G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 2003;112:1466–77CrossRefGoogle Scholar
2Sanglard, D. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 2002;5:379–85CrossRefGoogle ScholarPubMed
3Costerton, JW, Montanaro, L, Arciola, CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs 2004;28:1062–8CrossRefGoogle Scholar
4Davies, DG, Parsek, MR, Pearson, JP, Iglewski, BH, Costerton, JW, Greenberg, EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998;280:295–8CrossRefGoogle ScholarPubMed
5O'Toole, GA, Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998;30:295304CrossRefGoogle ScholarPubMed
6Singh, PK, Schaeffer, AL, Parsek, MR, Moninger, TO, Welsh, MJ, Greenberg, EP. Quorum sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000;407:762–4CrossRefGoogle ScholarPubMed
7Hastings, JW, Greenberg, EP. Quorom sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 1999;181:2667–8CrossRefGoogle Scholar
8Dunn, AK, Handelsman, J. Towards an understanding of microbial communities through analysis of communication networks. Antonie van Leeuwenhoek 2002;81:565–74CrossRefGoogle Scholar
9Sutherland, IW. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 2001;9:222–7CrossRefGoogle ScholarPubMed
10Flemming, HC, Wingender, J, Mayer, C, Korstgens, V, Borchard, W. Cohesiveness in biofilm matrix polymers. In: Allison, D, Gilbert, P, Lappin-Scott, HM, Wilson, M. SGM Symposium Series 59. Cambridge: Cambridge University Press, 2000;87105Google Scholar
11Costerton, JW, Stewart, PS, Greenberg, EP. Bacterial biofilm. A common cause of persistent infections. Science 1999;284:1318–22CrossRefGoogle ScholarPubMed
12Chole, RA, Faddis, BT. Anatomical evidence of microbial biofilms in tonsillar tissues. A possible mechanism to explain chronicity. Arch Otolaryngol Head Neck Surg 2003;129:634636CrossRefGoogle ScholarPubMed
13De Beer, D, Stoodley, P, Roe, F, Lewandowski, Z. Effects of biofilm structure on oxygen distribution and mass transport. Biotechnol Bioeng 1994;43:1131–8CrossRefGoogle ScholarPubMed
14Stoodley, P, Lewandowski, Z, Boyle, JD, Lappin-Scott, HM. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1999;1:447–55CrossRefGoogle Scholar
15Lee, SF, Li, YH, Bowden, GH. Detachment of Streptococcus mutants biofilm cells by an endogenous enzymatic activity. Infect Immun 1996;64:1035–8CrossRefGoogle Scholar
16Baty, AM 3rd, Eastburn, CC, Diwu, Z, Techkarnjanaruk, S, Goodman, AE, Geesey, GG. Differentiation of chitinase-active and non-chitinase-active sub-populations of a marine bacterium during chitin degradation. Appl Environ Microbiol 2000;66:3566–73CrossRefGoogle Scholar
17Baty, AM 3rd, Eastburn, CC, Diwu, Z, Techkarnjanaruk, S, Goodman, AE, Geesey, GG. Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation. Appl Environ Microbiol 2000;66:3574–85CrossRefGoogle ScholarPubMed
18Cramton, SE, Gerke, C, Schnell, NF, Nicholas, WW, Gotz, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 1999;67:5427–33CrossRefGoogle ScholarPubMed
19Sanclement, JA, Webster, P, Thomas, J, Ramadan, HH. Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis. Laryngoscope 2005;115:578–82CrossRefGoogle ScholarPubMed
20Donlan, RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002;8:881–90CrossRefGoogle ScholarPubMed
21Baggo, N, Heutzer, M, Anderson, JB, Ciofu, O, Givskov, M, Holby, N. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeurginosa biofilms. Antimicrob Agents Chemother 2004;48:1168–74CrossRefGoogle Scholar
22Walters, MC 3rd, Roe, F, Bugnicourt, A, Franklin, MJ, Stewart, PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003;47:317–23CrossRefGoogle ScholarPubMed
23Stewart, PS, Costerton, JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135–8CrossRefGoogle ScholarPubMed
24Konig, C, Schwank, S, Biaser, J. Factors compromising antibiotic activity against biofilms of Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis 2001;20:20–6CrossRefGoogle ScholarPubMed
25Brooun, A, Tomashek, JJ, Lewis, K. Purification and ligand binding of EmrR, a regulator of multidrug transporter. J Bacteriol 1999;181:5131–3CrossRefGoogle ScholarPubMed
26Lewis, K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001;45:9991007CrossRefGoogle ScholarPubMed
27Chan, KH, Abzug, MJ, Coffinet, L, Simoes, EAF, Cool, C, Liu, AH. Chronic rhinosinusitis in young children differs from adults: a histopathological study. J Paediatr 2004;144:206–12CrossRefGoogle Scholar
28National Center for Health Statistics. Chronis sinusitis. In: Summary Health Statistics for US Adults, 2002. Hyattsville, Maryland: Centers for Disease Control, US Department of Health and Human Services. Available at: http://www.cdc.gov/nchs/fastats/sinuses.htmGoogle Scholar
29Benninger, MS, Ferguson, BJ, Hadley, JA, Hamilos, DL, Jacobs, M, Kennedy, DW et al. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg 2003;129(suppl):S12CrossRefGoogle ScholarPubMed
30Klossek, JM, Dubreuil, L, Richet, H, Richet, B, Beuttter, P. Bacteriology of chronic purulent secretions in chronic rhinosinusitis. J Laryngol Otol 1998;112:1162–6CrossRefGoogle ScholarPubMed
31Chan, J, Hadley, J. The microbiology of chronic rhinosinusitis: results of a community surveillance study. Ear Nose Throat J 2001;80:143–5CrossRefGoogle ScholarPubMed
32Finegold, SM, Flynn, MJ, Rose, FV, Jousimies-Somer, H, Jakielaszek, C, McTeague, M et al. Bacteriologic findings associated with chronic maxillary sinusitis in adults. Clin Infect Dis 2002;35:428–33CrossRefGoogle ScholarPubMed
33Harvey, RJ, Lund, VJ. Biofilms and chronic rhinosinusitis: systematic review of evidence, current concepts and directions for research. Rhinology 2007;45:313Google ScholarPubMed
34Higgins, JPT, Green, S. Cochrane Handbook for Systematic Reviews of Interventions, 5th edn.Wiley-Blackwell, Oxford: Cochrane Collaboration, 2008CrossRefGoogle Scholar
35Stroup, DF, Berlin, JA, Morton, SC, Olkin, I, Williamson, GD, Rennie, D et al. Meta-analysis of observational studies in epidemiology – a proposal for reporting. JAMA 2000;283:2008–12CrossRefGoogle ScholarPubMed
36Cryer, J, Schipor, I, Perloff, JR, Palmer, JN. Evidence of bacterial biofilms in chronic rhinosinusitis. ORL J Otorhinolaryngol Relat Spec 2004;66:155–8CrossRefGoogle Scholar
37Ferguson, BJ, Stolz, DB. Demonstration of biofilm in human bacterial chronic rhinosinusitis. Am J Rhinol 2005;19:452–7CrossRefGoogle ScholarPubMed
38Ramadan, HH, Sanclement, JA, Thomas, JG. Chronic rhinosinusitis and biofilms. Otolaryngol Head Neck Surg 2005;132: 414–17CrossRefGoogle ScholarPubMed
39Sanderson, AR, Leid, JG, Hunsaker, D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 2006;116:1121–6CrossRefGoogle ScholarPubMed
40Zuliani, G, Carron, M, Gurrola, J, Coleman, C, Haupert, M, Berk, R et al. Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol 2006;70:1613–17CrossRefGoogle ScholarPubMed
41Dworniczek, E, Fraczek, M, Kassner, J, Adamski, R, Seniuk, A, Choroszy-Kroi, I. Bacterial biofilms in patients with chronic rhinosinusitis. European Congress of Clinical Microbiology and Infectious Diseases. Munich: Blackwell, Oxford, 2007Google Scholar
42Psaltis, AJ, Ha, KR, Beule, AG, Tan, LW, Wormald, PJ. Confocal scanning laser microscopy evidence of biofilms in patients with chronic rhinosinusitis. Laryngoscope 2007;117:1302–6CrossRefGoogle ScholarPubMed
43Healy, DY, Leid, JG, Sanderson, AR, Hunsaker, DH. Biofilms with funghi in chronic rhinosinusitis. Otolaryngol Head Neck Surg 2008;138:641–7CrossRefGoogle Scholar
44Psaltis, AJ, Wormald, PJ, Ha, KR, Tan, LW. Reduced levels of lactoferrin in biofilm-associated chronic rhinosinusitis. Laryngoscope 2008;118:895901CrossRefGoogle ScholarPubMed
45Psaltis, AJ, Weitzel, EK, Ha, KR, Wormald, PJ. The effect of bacterial biofilms on post-sinus surgical outcomes. Am J Rhinol 2008;22:16CrossRefGoogle ScholarPubMed
46Ha, KR, Psaltis, AJ, Butcher, AR, Wormald, PJ, Tan, LW. In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope 2008;118:535–40CrossRefGoogle ScholarPubMed
47Bendouah, Z, Barbeau, J, Harnard, WA, Desrosiers, M. Use of an in vitro assay for determination of biofilm-forming capacity of bacteria in chronic rhinosinusitis. Am J Rhinol 2006;20:434–8CrossRefGoogle Scholar
48Bendouah, Z, Barbeau, J, Harnard, WA, Desrosiers, M. Biofilm formation by Staphylococcus aureus and Pseudomonas aeurginosa is associated with an unfavourable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg 2006;134:991–6CrossRefGoogle Scholar
49Perloff, JR, Palmer, JN. Evidence of bacterial biofilms in a rabbit model of sinusitis. Am J Rhinol 2005;19:16CrossRefGoogle Scholar
50Ha, KR, Psaltis, AJ, Tan, L, Wormald, PJ. A sheep model for the study of biofilms in rhinosinusitis. Am J Rhinol 2007;21:339–45CrossRefGoogle Scholar
51Palmer, J. Bacterial biofilms in chronic rhinosinusitis. Ann Otol Rhinol Laryngol Suppl 2006;196:35–9CrossRefGoogle ScholarPubMed
52Chiu, AG, Antunes, MB, Palmer, J, Cohen, NA. Evaluation of the in vivo efficacy of topical tobramycin against Pseudomonas sinonasal biofilms. J Antimicrob Chemother 2007;59:1130–4CrossRefGoogle ScholarPubMed
53Ramadan, HH. Chronic rhinosinusitis and bacterial biofilms. Curr Opin Otolaryngol Head Neck Surg 2006;14:183–6CrossRefGoogle ScholarPubMed
54Hunasaker, DH, Leid, JG. The relationship of biofilms to chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2008;16:237–41CrossRefGoogle Scholar
55Wolf, G, Crespo, JG, Reis, MAM. Optical and spectroscopic methods for biofilm examination and monitoring. Rev Biotechnol 2002;1:227–51Google Scholar
56Bester, E, Woolfaardt, G, Joubert, L, Garny, K, Saftic, S. Planktonic-cell yield of a pseudomonal biofilm. Appl Environ Microbiol 2005;71:7729–98CrossRefGoogle Scholar