Skip to main content Accessibility help

Acquired cholesteatoma: summary of the cascade of molecular events

  • L Louw (a1)



Cholesteatoma is considered a benign, gradually expanding and destructive epithelial lesion of the temporal bone. The pathogenesis of different classifications of cholesteatoma is marked by similar underlying cellular and molecular processes. Stepwise explanations of the histopathogenesis have been described previously. The current paper focuses on expounding the molecular events of cholesteatoma.

Method and results:

Cholesteatoma pathogenesis encompasses a complex network of signalling pathways during: epidermal hyperplasia, perimatrix–matrix interactions and mucosal disease. This paper presents a review of the molecular events driven by inflammatory mediators and enzymes during: cholesteatoma growth (cell proliferation and apoptosis); maintenance and deterioration (angiogenesis and hypoxia, oxidative stress and toxicity); and complications (bone erosion and hearing loss). The cascade of molecular events applicable to atelectasis and cholesteatoma that coexist with chronic otitis media and bone erosion as sequelae is summarised.


The role of lipids in this disease is relatively unexplored, but there is evidence in support of fatty acid role-players that needs confirmation. Future directions in lipid research to delineate molecular mechanisms are proposed.


Corresponding author

Address for correspondence: Dr L Louw, Department of Otorhinolaryngology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa E-mail:


Hide All
1Louw, L. Acquired cholesteatoma pathogenesis: stepwise explanations. J Laryngol Otol 2010;124:587–93
2Olszewska, E, Wagner, M, Bernal-Sprekelson, M, Ebmeyer, J, Dazert, S, Hildmann, H et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol 2004;261:624
3Tos, M. Manual of Middle Ear Surgery. New York: Thieme, 1993
4Seibert, JW, Danner, CJ. Eustachian tube function and the middle ear. Otolaryngol Clin North Am 2006;39:1221–35
5Chole, RA, Sudhoff, HH. Chronic otitis media, mastoiditis and petrositis. In Cummings, Otolaryngology: Head and Neck Surgery, 4th edn: Mosby Elsevier, 2005;4:29883003
6Sudhoff, H, Tos, M. Pathogenesis of sinus cholesteatoma. Eur Arch Otorhinolaryngol 2007;264:137–43
7Mishiro, Y, Sakagami, M, Kitahara, T, Kondoh, K, Okumura, S. The investigation of the recurrence rate of cholesteatoma using Kaplein-Meier survival analysis. Otol Neurotol 2008;29:803–6
8Mustafa, A, Heta, A, Kastrai, B, Dreshaj, SH. Complications of chronic otitis media with cholesteatoma during a 10-year period in Kosovo. Eur Arch Otorhinolaryngol 2008;265:1477–82
9Chole, RA, Faddis, BT. Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg 2002;128:1129–33
10Post, JC, Hiller, NL, Nistico, L, Stoodley, P, Ehrlich, GD. The role of biofilms in otolaryngologic infections: update 2007. Curr Opin Otolaryngol Head Neck Surg 2007;15:347–51
11Macassey, E, Dawes, P. Biofilms and their role in otorhinolaryngological disease. J Laryngol Otol 2008;122:1273–8
12Wang, E, Jung, J, Nason, R, Pashia, M, Chole, R. Characterization of otopathogenic Pseudomonas aeruginosa: a biofilm phenotype. Arch Otolaryngol Head Neck Surg 2005;131:983–9
13Junh, SK, Jung, M-K, Hoffman, MD, Drew, BR, Preciado, DA, Sausen, NJ et al. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol 2008;1:117–38
14Peek, FAW, Huisman, M, Berckmans, RJ, Sturk, A, van Loon, J, Grote, JJ. Lipopolysaccharide concentration and bone resorption in cholesteatoma. Otol Neurotol 2003;24:709–13
15Dornelles, C, da Costa, SS, Meurer, L, Schweiger, C. Correlation of cholesteatomas perimatrix thickness with patient's age. Rev Bras J Otorrinolaringol 2005;6:792–7
16Nagai, T, Suganuma, T, Ide, S, Shimoda, H, Kato, S. Confirmation of mucin in lymphatic vessels of acquired cholesteatoma. Eur Arch Otorhinolaryngol 2006;263:361–4
17Sudhoff, H, Dazert, S, Gonzales, AM, Borkowski, G, Park, SY, Baird, A et al. Angiogenesis and angiogenic growth factors in middle ear cholesteatoma. Am J Otol 2000;21:793–8
18Adunka, O, Gstoettner, W, Knecht, R, Kiener, AC. Expression of hypoxia inducible factor 1 alpha and Von Hippel Lindau protein in human middle ear cholesteatoma. Laryngoscope 2003;113:1210–15
19Olszewska, E, Chodynicki, S, Chyczewski, L. Apoptosis in the pathogenesis of cholesteatoma in adults. Eur Arch Otorhinolaryngol 2006;263:409–13
20Alves, AL, Pereira, CSB, Carvalho M de, FP, Fregnani, JHTG, Ribeiro, FQ. EGFR expression in acquired middle ear cholesteatoma in children and adults. Eur J Pediatr 2012;171:307–10
21Barbara, M, Raffa, S, Mure, C, Manni, V, Ronchetti, F, Monini, S et al. Keratinocyte growth factor receptor (KGF-R) in cholesteatoma tissue. Acta Otolaryngol 2008;128:360–4
22Yamamoto-Fukuda, T, Takahasi, H, Koji, T. Expression of keratinocyte growth factor and its receptor in a middle ear cavity problem. Int J Pediatr Otorhinolaryngol 2012;76:7681
23Jin, BJ, Min, HJ, Jeong, JH, Park, CW, Lee, SH. Expression of EGFR and microvessel density in middle ear cholesteatoma. Clin Exp Otorhinolaryngol 2011;4:6771
24Macias, MP, Gerkin, RD, Macias, JD. Increased amphiregulin expression as a biomarker of cholesteatoma activity. Laryngoscope 2010;120:2258–63
25Kucczkowski, J, Pawelczyk, T, Bakowska, A, Narozny, W, Mikaszewski, B. Expression of patterns of Ki-67 and telomerase activity in middle ear cholesteatoma. Otol Neurotol 2007;28:204–7
26Olszewska, E, Lautermann, J, Koc, C, Schwaab, M, Dazert, S, Hildmann, H et al. Cytokeratin expression pattern in congenital and acquired pediatric cholesteatoma. Eur Arch Otorhinolaryngol 2005;262:731–6
27Olszewska, E, Sudhoff, H. Comparative cytokeratin distribution patterns in cholesteatoma epithelium. Histol Histopathol 2007;22:3742
28Park, HR, Min, SK, Min, K, Jun, SY, Seo, J, Kim, HJ. Increased expression of p63 and survivin in cholesteatomas. Acta Otolaryngol 2009;129:268–72
29Kuczkowski, J, Bakowska, J, Pawelczyk, T, Narozny, W, Mikaszewski, B. Cell cycle inhibitory protein p27 in human middle ear cholesteatoma. ORL J Otorhinolaryngol Relat Spec 2006;68:296301
30Sakamoto, T, Kondo, K, Yamasodba, T, Suzuki, M, Sugasawa, M, Kaga, K. Over-expression of ErbB-2 protein in middle ear cholesteatomas. Laryngoscope 2004;114:1988–91
31Osturk, K, Yildirim, MS, Ascar, H, Cenik, Z, Keles, B. Evaluation of c-myc status in primary acquired cholesteatoma by using fluorescence in situ hybridization techniques. Otol Neurotol 2006;27:588–91
32Motamed, M, Powe, D, Kendall, C, Birchall, JP, Banerjee, AR. p53 Expression and keratinocyte hyperproliferation in middle ear cholesteatoma. Clin Otolaryngol Allied Sci 2002;27:505–8
33Huang, CC, Chen, CT, Huang, TS, Shinoda, H. Mediation of signal transduction in keratinocytes of human middle ear cholesteatoma by ras protein. Eur Arch Otorhinolaryngol 1996;253:385–9
34Miyao, M, Shinoda, H, Takahashi, S. Caspase-3, caspase-8 and nuclear factor-kappa beta expression in human cholesteatoma. Otol Neurotol 2006;27:8–1
35Jung, MH, Lee, JH, Cho, JG, Jung, HH, Hwang, SJ, Chae, SW. Expressions of caspase-14 in human middle ear cholesteatoma. Laryngoscope 2008;118:1047–50
36Huisman, MA, De Heer, E, Grote, JJ. Terminal differentiation and mitogen-activated protein kinase signaling in human cholesteatoma epithelium. Otol Neurotol 2006;27:422–6
37Huisman, MA, De Heer, E, Grote, JJ. Survival signaling and terminal differentiation in cholesteatoma epithelium. Acta Otolaryngol 2007;127:424–9
38Niam, R, Chang, RC, Sadick, H, Bayerl, C, Bran, G, Hormann, K. Effect of vascular endothelial growth factor on fibroblasts from external auditory canal cholesteatoma. Arch Med Res 2005;36:518–23
39Morales, SD, Penido N de, O, da Silva, NID, Stavale, JN, Guilherme, A, Fukuda, Y. Matrix metalloproteinase 2: an important genetic marker for cholesteatomas. Braz J Otorhinolaryngol 2007;73:51–7
40Song, JJ, Chae, SW, Woo, JS, Lee, HM, Jung, HH, Hwang, SJ. Differential expression of human beta defensin 2 and human beta defensin 3 in human middle ear cholesteatoma. Ann Otol Rhinol Laryngol 2007;116:235–40
41Hussein, MRA, Sayed, RM, Abu-Dief, EE. Immune cell profile in invasive cholesteatomas: preliminary findings. Exp Mol Pathol 2010;88:316–23
42Huisman, MA, de Heer, E, Dijke, PT, Grote, JJ. Transforming growth factor beta and wound healing in human cholesteatoma. Laryngoscope 2007;118:94–8
43Jung, JY, Chole, RA. Bone resorption in chronic otitis media: the role of the osteoclast. ORL J Otorhinolaryngol Relat Spec 2002;64:95107
44Olszweska, E, Borzym-Kluczyk, M, Olszweska, S, Rogowski, M, Zwierz, K. Hexosaminidase as a new potential marker for middle ear cholesteatoma. Clin Biochem 2006;39:1088–90
45Vitale, RF, Ribeiro F de, AQ. The role of tumor necrosis factor-alpha in bone resorption present in middle ear cholesteatoma. Bras J Otorrinolaringol 2007;73:123–7
46Yuan, J, Akiyama, M, Nakahama, K-I, Sato, T, Uematsu, H, Morita, I. The effects of polyunsaturated fatty acids and their metabolites on osteoclastogenesis in vitro. Prostaglandins Other Lipid Mediat 2010;92:8590
47Byun, JY, Yune, TY, Lee, JY, Yeo, SG, Park, MS. Expression of CYLD and NF-κB in human cholesteatoma epithelium. Mediators Inflamm 2010;2010:796315. Epub 2010 Apr 21
48Iino, Y, Toriyama, M, Ogawa, H, Kawakami, M. Cholesteatoma debris as an activator of human monocytes. Acta Otolaryngol (Stockh) 1990;110:410–15
49Nason, R, Jung, JY, Chole, RA. Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol 2009;10:151–60
50Hellstrom, S, Eriksson, PQ, Yoon, YJ, Johansson, U. Interactions between the middle ear and the inner ear: bacterial products. Ann N Y Acad Sci 1997;830:110–19
51Aggarwal, BB, Shishodia, S, Sandur, SK, Pandey, MK, Sethi, G. Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006;72:1605–21
52Valko, M, Leibfritz, D, Moncol, J, Cronin, MTD, Mazur, M, Telser, MJ. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:4484
53Eskiizmir, G, Yuceturk, AV, Onur, E, Var, A, Temiz, P. The imbalance of enzymatic antioxidants in cholesteatoma. Acta Otolaryngol 2009;129:1187–91
54Online textbook of bacteriology. In: [30 January 2012]
55Celebi, O, Paksoy, M, Aydin, S, Sanh, A, Tasdemir, O, Gull, AE. Myeloperoxydase activity in the pathogenesis of cholesteatoma. Indian J Otolaryngol Head Neck Surg 2010;62:32–5
56Horrobin, DF. Medical uses of essential fatty acids. Vet Dermatol 1994;4:161–6
57Das, UN. Essential fatty acids: a review. Curr Pharm Biotechnol 2006;7:467–82
58Shah, US, Dhir, R, Golli, SM, Chandran, UR, Lewis, D, Acquafondata, M et al. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum Pathol 2006;37:401–9
59Martinasso, G, Oraldi, G, Trombetta, A, Maggiora, M, Bertetto, M. Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res 2007;2007:93416
60Hwang, SJ, Kang, HJ, Song, JJ, Kang, JS, Woo, JS, Chae, SW et al. Up-regulation of peroxidase proliferator-activated receptor gamma in cholesteatoma. Laryngoscope 2006;116:5861
61Niki, E, Yoshida, Y, Saito, Y, Noguchi, N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 2005;338:668–76
62Khan, M, Contreras, M, Sing, I. Endotoxin-induced alterations of lipid and fatty acid compositions in rat liver peroxisomes. J Endotoxin Res 2000;6:4150
63Knowles, HJ, Cleton-Jansen, A-M, Korsching, E, Athanasou, NA. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J 2010;24:4648–59
64O'Shea, M, Bassagaya-Riera, J, Mohede, IC. Immunomodulatory properties of conjugated linoleic acid. Am J Clin Nutr 2004;79:1199S1206S
65Aggarwal, BB. Nuclear factor-kappa B: a transcription factor for all seasons. Expert Opin Ther Targets 2007;11:109–10
66Jung, JY, Lin, AC, Ramos, LM, Faddis, BT, Chole, RA. Nitric oxide synthase I mediates osteoclast activity in vitro and in vivo. J Cell Biochem 2003;89:613–21
67Deon, M, Garcia, MP, Sitta, A, Barschak, AG, Coelho, M, Graziela, O et al. Hexacosanoic acid and docosanoic acids plasma levels in patients with cerebral childhood and asymptomatic X-linked adrenoleukodystrophy: Lorenzo's effect. Metab Brain Dis 2008;23:43–9


Acquired cholesteatoma: summary of the cascade of molecular events

  • L Louw (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed