Skip to main content Accessibility help
×
Home

Collagen matrix as an inlay in endoscopic skull base reconstruction

Published online by Cambridge University Press:  18 July 2017

G M Oakley
Affiliation:
Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, USA Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
J M Christensen
Affiliation:
Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
M Winder
Affiliation:
Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia Department of Neurosurgery, St Vincent's Hospital, Sydney, Australia
B P Jonker
Affiliation:
Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia Department of Neurosurgery, St Vincent's Hospital, Sydney, Australia
A Davidson
Affiliation:
Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
T Steel
Affiliation:
Department of Neurosurgery, St Vincent's Hospital, Sydney, Australia
C Teo
Affiliation:
Centre for Minimally Invasive Neurosurgery, Prince of Wales Hospital, Sydney, Australia
R J Harvey
Affiliation:
Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
Corresponding
E-mail address:
Get access

Abstract

Background:

Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described.

Methods:

A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined.

Results:

Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients.

Conclusion:

Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 2017 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Presented as a poster at the Australian Society of Otolaryngology Head and Neck Surgery Annual Scientific Meeting, 6–8 March 2016, Melbourne, Victoria, Australia.

References

1 Harvey, RJ, Smith, JE, Wise, SK, Patel, SJ, Frankel, BM, Schlosser, RJ. Intracranial complications before and after endoscopic skull base reconstruction. Am J Rhinol 2008;22:516–21CrossRefGoogle ScholarPubMed
2 Bernal-Sprekelsen, M, Rioja, E, Ensenat, J, Enriquez, K, Viscovich, L, Agredo-Lemos, FE et al. Management of anterior skull base defect depending on its size and location. Biomed Res Int 2014;2014:346873 CrossRefGoogle ScholarPubMed
3 Bhavana, K, Kumar, R, Keshri, A, Aggarwal, S. Minimally invasive technique for repairing CSF leaks due to defects of posterior table of frontal sinus. J Neurol Surg B Skull Base 2014;75:183–6Google ScholarPubMed
4 Farooq, MU, Ansari, MA. Cerebrospinal fluid rhinorrhea: etiology, site of leakage and endoscopic management. J Coll Physicians Surg Pak 2011;21:460–3Google ScholarPubMed
5 Kong, DS, Kim, HY, Kim, SH, Min, JY, Nam, DH, Park, K et al. Challenging reconstructive techniques for skull base defect following endoscopic endonasal approaches. Acta Neurochir (Wien) 2011;153:807–13CrossRefGoogle ScholarPubMed
6 Sanders-Taylor, C, Anaizi, A, Kosty, J, Zimmer, LA, Theodosopoulos, PV. Sellar reconstruction and rates of delayed cerebrospinal fluid leak after endoscopic pituitary surgery. J Neurol Surg B Skull Base 2015;76:281–5CrossRefGoogle ScholarPubMed
7 Amit, M, Margalit, N, Abergel, A, Gil, Z. Fascia lata for endoscopic reconstruction of high-flow leaks: the champagne cork technique. Otolaryngol Head Neck Surg 2013;148:697700 CrossRefGoogle ScholarPubMed
8 Luginbuhl, AJ, Campbell, PG, Evans, J, Rosen, M. Endoscopic repair of high-flow cranial base defects using a bilayer button. Laryngoscope 2010;120:876–80Google ScholarPubMed
9 Ozturk, O, Polat, S, Uneri, C. Endoscopic endonasal management of cerebrospinal fluid rhinorrhea. J Craniofac Surg 2012;23:1087–92CrossRefGoogle ScholarPubMed
10 Villaret, AB, Yakirevitch, A, Bizzoni, A, Bosio, R, Bignami, M, Pistochini, A et al. Endoscopic transnasal craniectomy in the management of selected sinonasal malignancies. Am J Rhinol Allergy 2010;24:60–5CrossRefGoogle ScholarPubMed
11 Emanuelli, E, Milanese, L, Rossetto, M, Cazzador, D, d'Avella, E, Volo, T et al. The endoscopic endonasal approach for cerebrospinal fluid leak repair in the elderly. Clin Neurol Neurosurg 2015;132:21–5CrossRefGoogle ScholarPubMed
12 Germani, RM, Vivero, R, Herzallah, IR, Casiano, RR. Endoscopic reconstruction of large anterior skull base defects using acellular dermal allograft. Am J Rhinol 2007;21:615–18CrossRefGoogle ScholarPubMed
13 Eloy, JA, Patel, SK, Shukla, PA, Smith, ML, Choudhry, OJ, Liu, JK. Triple-layer reconstruction technique for large cribriform defects after endoscopic endonasal resection of anterior skull base tumors. Int Forum Allergy Rhinol 2013;3:204–11CrossRefGoogle ScholarPubMed
14 Gaynor, BG, Benveniste, RJ, Lieberman, S, Casiano, R, Morcos, JJ. Acellular dermal allograft for sellar repair after transsphenoidal approach to pituitary adenomas. J Neurol Surg B Skull Base 2013;74:155–9CrossRefGoogle ScholarPubMed
15 Ismail, AS, Costantino, PD, Sen, C. Transnasal transsphenoidal endoscopic repair of CSF leakage using multilayer acellular dermis. Skull Base 2007;17:125–32CrossRefGoogle ScholarPubMed
16 Liebelt, BD, Huang, M, Baskin, DS. Sellar floor reconstruction with the Medpor implant versus autologous bone after transnasal transsphenoidal surgery: outcome in 200 consecutive patients. World Neurosurg 2015;84:240–5CrossRefGoogle ScholarPubMed
17 Chung, SB, Nam, DH, Park, K, Kim, JH, Kong, DS. Injectable hydroxyapatite cement patch as an on-lay graft for the sellar reconstructions following endoscopic endonasal approach. Acta Neurochir (Wien) 2012;154:659–64CrossRefGoogle ScholarPubMed
18 Harvey, RJ, Parmar, P, Sacks, R, Zanation, AM. Endoscopic skull base reconstruction of large dural defects: a systematic review of published evidence. Laryngoscope 2012;122:452–9CrossRefGoogle ScholarPubMed
19 Oakley, GM, Orlandi, RR, Woodworth, BA, Batra, PS, Alt, JA. Management of cerebrospinal fluid rhinorrhea: an evidence-based review with recommendations. Int Forum Allergy Rhinol 2016;6:1724 CrossRefGoogle ScholarPubMed
20 Soudry, E, Turner, JH, Nayak, JV, Hwang, PH. Endoscopic reconstruction of surgically created skull base defects: a systematic review. Otolaryngol Head Neck Surg 2014;150:730–8CrossRefGoogle ScholarPubMed
21 Citardi, MJ, Cox, AJ 3rd, Bucholz, RD. Acellular dermal allograft for sellar reconstruction after transsphenoidal hypophysectomy. Am J Rhinol 2000;14:6973 CrossRefGoogle ScholarPubMed
22 Lorenz, RR, Dean, RL, Hurley, DB, Chuang, J, Citardi, MJ. Endoscopic reconstruction of anterior and middle cranial fossa defects using acellular dermal allograft. Laryngoscope 2003;113:496501 CrossRefGoogle ScholarPubMed
23 Illing, E, Chaaban, MR, Riley, KO, Woodworth, BA. Porcine small intestine submucosal graft for endoscopic skull base reconstruction. Int Forum Allergy Rhinol 2013;3:928–32CrossRefGoogle ScholarPubMed
24 Braca, JA 3rd, Marzo, S, Prabhu, VC. Cerebrospinal fluid leakage from tegmen tympani defects repaired via the middle cranial fossa approach. J Neurol Surg B Skull Base 2013;74:103–7CrossRefGoogle ScholarPubMed
25 Narotam, PK, Qiao, F, Nathoo, N. Collagen matrix duraplasty for posterior fossa surgery: evaluation of surgical technique in 52 adult patients. Clinical article. J Neurosurg 2009;111:380–6CrossRefGoogle ScholarPubMed
26 Shorter, CD, Connor, DE Jr, Thakur, JD, Gardner, G, Nanda, A, Guthikonda, B. Repair of middle fossa cerebrospinal fluid leaks using a novel combination of materials: technical note. Neurosurg Focus 2012;32:E8 CrossRefGoogle ScholarPubMed
27 Fokkens, WJ, Lund, VJ, Mullol, J, Bachert, C, Alobid, I, Baroody, F et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl 2012;(23):1298 Google ScholarPubMed
28 Chatrath, P, Saleh, HA. Endoscopic repair of cerebrospinal fluid rhinorrhea using bone pate. Laryngoscope 2006;116:1050–3CrossRefGoogle ScholarPubMed
29 Zanation, AM, Carrau, RL, Snyderman, CH, McKinney, KA, Wheless, SA, Bhatki, AM et al. Nasoseptal flap takedown and reuse in revision endoscopic skull base reconstruction. Laryngoscope 2011;121:42–6CrossRefGoogle ScholarPubMed
30 Hadad, G, Bassagasteguy, L, Carrau, RL, Mataza, JC, Kassam, A, Snyderman, CH et al. A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope 2006;116:1882–6CrossRefGoogle ScholarPubMed
31 Cavallo, LM, Messina, A, Esposito, F, de Divitiis, O, Dal Fabbro, M, de Divitiis, E et al. Skull base reconstruction in the extended endoscopic transsphenoidal approach for suprasellar lesions. J Neurosurg 2007;107:713–20CrossRefGoogle ScholarPubMed
32 Wessell, A, Singh, A, Litvack, Z. One-piece modified gasket seal technique. J Neurol Surg B Skull Base 2013;74:305–10CrossRefGoogle ScholarPubMed
33 Tabaee, A, Kamat, A, Shrivastava, R. Complex reconstruction of the sella using absorbable mini-plate in revision endoscopic pituitary surgery: technical note. J Neurol Surg A Cent Eur Neurosurg 2013;74:313–17Google ScholarPubMed
34 Sanna, M, Taibah, A, Russo, A, Falcioni, M, Agarwal, M. Perioperative complications in acoustic neuroma (vestibular schwannoma) surgery. Otol Neurotol 2004;25:379–86CrossRefGoogle ScholarPubMed
35 Taha, AN, Almefty, R, Pravdenkova, S, Al-Mefty, O. Sequelae of autologous fat graft used for reconstruction in skull base surgery. World Neurosurg 2011;75:692–5CrossRefGoogle ScholarPubMed
36 Hwang, PH, Jackler, RK. Lipoid meningitis due to aseptic necrosis of a free fat graft placed during neurotologic surgery. Laryngoscope 1996;106:1482–6CrossRefGoogle ScholarPubMed
37 Leng, LZ, Brown, S, Anand, VK, Schwartz, TH. “Gasket-seal” watertight closure in minimal-access endoscopic cranial base surgery. Neurosurgery 2008;62(5 suppl 2):342–3Google ScholarPubMed
38 Zerris, VA, James, KS, Roberts, JB, Bell, E, Heilman, CB. Repair of the dura mater with processed collagen devices. J Biomed Mater Res B Appl Biomater 2007;83:580–8CrossRefGoogle ScholarPubMed
39 Prickett, KK, Wise, SK, Delgaudio, JM. Choice of graft material and postoperative healing in endoscopic repair of cerebrospinal fluid leak. Arch Otolaryngol Head Neck Surg 2011;137:457–61CrossRefGoogle ScholarPubMed
40 Walsh, E, Illing, E, Riley, KO, Cure, J, Srubiski, A, Harvey, RJ et al. Inaccurate assessments of anterior cranial base malignancy following nasoseptal flap reconstruction. J Neurol Surg B Skull Base 2015;76:385–9CrossRefGoogle ScholarPubMed
41 Leong, JL, Citardi, MJ, Batra, PS. Reconstruction of skull base defects after minimally invasive endoscopic resection of anterior skull base neoplasms. Am J Rhinol 2006;20:476–82CrossRefGoogle ScholarPubMed
42 World Health Organization. WHO Guidelines on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies. Geneva: WHO, 2006 Google Scholar
43 Warren, WL, Medary, MB, Dureza, CD, Bellotte, JB, Flannagan, PP, Oh, MY et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery 2000;46:1391–6CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 31
Total number of PDF views: 172 *
View data table for this chart

* Views captured on Cambridge Core between 18th July 2017 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-frjnl Total loading time: 0.356 Render date: 2021-01-20T15:55:01.187Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Collagen matrix as an inlay in endoscopic skull base reconstruction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Collagen matrix as an inlay in endoscopic skull base reconstruction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Collagen matrix as an inlay in endoscopic skull base reconstruction
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *