Skip to main content Accessibility help

Vector Bundles and Gromov–Hausdorff Distance

  • Marc A. Rieffel (a1)


We show how to make precise the vague idea that for compact metric spaces that are close together for Gromov–Hausdorff distance, suitable vector bundles on one metric space will have counterpart vector bundles on the other. Our approach employs the Lipschitz constants of projection-valued functions that determine vector bundles. We develop some computational techniques, and we illustrate our ideas with simple specific examples involving vector bundles on the circle, the two-torus, the two-sphere, and finite metric spaces. Our topic is motivated by statements concerning “monopole bundles” over matrix algebras in the literature of theoretical high-energy physics.



Hide All
1.Atiyah, M. F., K-theory, second ed., Addison-Wesley Pub., Redwood City, CA, 1989. MR 1043170 (90m: 18011)
2.Baez, S., Balachandran, A. P., Vaidya, S., and Ydri, B., Monopoles and solitons in fuzzy physics, Comm. Math. Phys. 208 (2000), no. 3, 787798, arXiv:hep-th/9811169. MR 1736336 (2001f:58015)
3.Balachandran, A. P. and Immirzi, Giorgio, Duality in fuzzy sigma models, Internat. J. Modern Phys. A 19 (2004), no. 30, 52375245, arXiv:hep-th/0408111. MR 2108640 (2005g:81156)
4.Balachandran, A. P., Immirzi, Giorgio, Lee, Joohan, and Prešnajder, Peter, Dirac operators on coset spaces, J. Math. Phys. 44 (2003), no. 10, 47134735, arXiv:hepth/0210297. MR 2008943 (2004i:58046)
5.Bellaiche, A., The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Birkhäuser, Basel, 1996, pp. 178. MR 98a:53108
6.Blackadar, Bruce, K-theory for operator algebras, second ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031 (99g:46104)
7.Brudnyi, Alexander and Brudnyi, Yuri, Extension of Lipschitz functions defined on metric subspaces of homogeneous type, Rev. Mat. Complut. 19 (2006), no. 2, 347359, arXiv:math.FA/0609535. MR 2241435 (2007d:54012)
8.Carow-Watamura, Ursula, Steinacker, Harold, and Watamura, Satoshi, Monopole bundles over fuzzy complex projective spaces, J. Geom. Phys. 54 (2005), no. 4, 373399, arXiv:hep-th/0404130.MR 2144709
9.Cheeger, Jeff and Ebin, David G., Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam, 1975. MR 0458335 (56 #16538)
10.Connes, Alain, C* algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599A604. MR 572645 (81c:46053)
11.Cuntz, Joachim, Meyer, Ralf and Rosenberg, Jonathan M., Topological and bivariant K-theory, Oberwolfach Seminars 36, Birkhäuser Verlag, Basel, 2007. MR 2340673
12.Davidson, Kenneth R., C*-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012 (97i:46095)
13.Fell, J. M. G. and Doran, R. S., Representations of* -algebras, locally compact groups, and Banach* -algebraic bundles. Vol. 1, Academic Press Inc., Boston, MA, 1988. MR 90c:46001
14.Frank, Michael and Larson, David R., A module frame concept for Hilbert C*-modules, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 207233. MR 1738091 (2001b:46094)
15.Frank, Michael and Larson, David R., Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002), no. 2, 273314. MR 1938798 (2003i:42040)
16.Friedrich, Thomas, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Providence, RI, 2000, Translated from the 1997 German original by Andreas Nestke. MR 1777332 (2001c:58017)
17.Goodearl, K. R., Notes on real and complex C*-algebras, Shiva Publishing Ltd., Nantwich, 1982. MR 677280 (85d:46079)
18.Gracia-Bondia, J. M., Vàrilly, J. C., and Figueroa, H., Elements of noncommutative geometry, Birkhäuser Boston Inc., Boston, MA, 2001. MR 1 789 831
19.Greene, R. E. and Wu, H., C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 1, 4784. MR 532376 (80m:53055)
20.Gromov, M., Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser Boston Inc., Boston, MA, 1999. MR 2000d:53065
21.Grosse, Harald, Rupp, Christian W., and Strohmaier, Alexander, Fuzzy line bundles, the Chern character and topological charges over the fuzzy sphere, J. Geom. Phys. 42 (2002), no. 1–2, 5463, arXiv:math-ph/0105033.MR 1894075 (2003f:58015)
22.Hawkins, Eli, Quantization of equivariant vector bundles, Comm. Math. Phys. 202 (1999), no. 3, 517546, arXiv:math-qa/9708030.MR 1690952 (2000j:58008)
23.Hawkins, Eli, Geometric quantization of vector bundles and the correspondence with deformation quantization, Comm. Math. Phys. 215 (2000), no. 2, 409432, arXiv:mathqa/9808116 and 9811049. MR 1799853 (2002a:53116)
24.Husemoller, Dale, Fibre bundles, second ed., Springer-Verlag, New York, 1975. MR 0370578 (51 #6805)
25.Johnson, William B., Lindenstrauss, Joram, and Schechtman, Gideon, Extensions of Lipschitz maps into Banach spaces, Israel J. Math. 54 (1986), no. 2, 129138. MR 852474 (87k:54021)
26.Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras. Vol. I, American Mathematical Society, Providence, RI, 1997, Reprint of the 1983 original. MR 98f:46001a
27.Karoubi, Max, K-theory, Die Grundlehren der Mathematischen Wissenschaften, Band 226, Springer-Verlag, Berlin, 1978. MR 0488029 (58 #7605)
28.Kato, Tosio, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473 (34 #3324)
29.König, Hermann and Tomczak-Jaegermann, Nicole, Norms of minimal projections, J. Funct. Anal. 119 (1994), no. 2, 253280. MR 1261092 (94m:46024)
30.Koszul, Jean-Louis, Homologie et cohomologie des algébres de Lie, Bull. Soc. Math. France 78, (1950). 65127. MR 0036511,
31.Landi, Giovanni, Deconstructing monopoles and instantons, Rev. Math. Phys. 12 (2000), no. 10, 13671390, arXiv:math-ph/9812004.MR 1794672 (2001m:53044)
32.Landi, Giovanni, Projective modules of finite type and monopoles over S2, J. Geom. Phys. 37 (2001), no. 1–2, 4762, arXiv:math-ph/9907020.MR 1806440 (2001k:58014)
33.Landi, Giovanni and van Suijlekom, Walter, Principal fibrations from noncommutative spheres, Comm. Math. Phys. 260 (2005), no. 1, 203225, arXiv:math.QA/0410077. MR 2175995 (2006g:58016)
34.Lee, James R. and Naor, Assaf, Extending Lipschitz functions via random metric partitions, Invent. Math., 160 (2005), no. 1, 5995. MR 2129708 (2006c:54013)
35.Li, Hanfeng, Smooth approximation of Lipschitz projections, arXiv:0810.4695.
36.Packer, Judith A. and Rieffel, Marc A., Wavelet filter functions, the matrix completion problem, and projective modules over C(n), J. Fourier Anal. Appl. 9 (2003), no. 2, 101116, arXiv:math.FA/0107231.MR 1964302 (2003m:42063)
37.Packer, Judith A. and Rieffel, Marc A., Projective multi-resolution analyses for L2(ℝ2), J. Fourier Anal. Appl. 10 (2004), no. 5, 439464, arXiv:math.FA/0308132. MR 2093911 (2005f:46133)
38.Petersen, Peter, V, A finiteness theorem for metric spaces, J. Differential Geom. 31 (1990), no. 2, 387395. MR 1037407 (91d:53070)
39.Przeslawski, Krzysztof and Yost, David, Continuity properties of selectors and Michael's theorem, Michigan Math. J. 36 (1989), no. 1, 113134, MR 989940 (90d:49010),
40.Reitberger, Heinrich, Leopold Vietoris (1891–2002), Notices Amer. Math. Soc. 49 (2002), no. 10, 12321236.
41.Rieffel, Marc A., C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415429. MR 623572 (83b:46087)
42.Rieffel, Marc A., The cancellation theorem for projective modules over irrational rotation C*-algebras, Proc. London Math. Soc. (3) 47 (1983), no. 2, 285302. MR 703981 (85g:46085)
43.Rieffel, Marc A., Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), no. 2, 257338. MR 941652 (89m:46110)
44.Rieffel, Marc A., Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215229, arXiv:math.OA/9807084.MR 1647515 (99k:46126)
45.Rieffel, Marc A., Metrics on state spaces, Doc. Math. 4 (1999), 559600, arXiv:math.OA/9906151. MR 1727499 (2001g:46154)
46.Rieffel, Marc A., Compact quantum metric spaces, Operator algebras, quantization, and noncommutative geometry, Contemp. Math., vol. 365, Amer. Math. Soc., Providence, RI, 2004, pp. 315330, arXiv:math.OA/0308207. MR 2106826 (2005h:46099)
47.Rieffel, Marc A., Gromov-Hausdorff distance for quantum metric spaces, Mem. Amer. Math. Soc. 168 (2004), no. 796, 165, arXiv:math.OA/0011063. MR 2055927
48.Rieffel, Marc A., Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Mem. Amer.Math. Soc. 168 (2004), no. 796, 6791, arXiv:math.OA/0108005. MR 2055928
49.Rieffel, Marc A., Lipschitz extension constants equal projection constants, Contemp. Math., vol. 414, Amer. Math. Soc., Providence, RI, 2006, pp. 147162, arXiv:math.FA/0508097. MR 2277209 (2007k:46028)
50.Rieffel, Marc A., A global view of equivariant vector bundles and Dirac operators on some compact homogeneous spaces, Group Representations, Ergodic Theory, and Mathematical Physics, Contemp. Math., vol. 449, Amer. Math. Soc., Providence, RI, 2008, pp. 399415, arXiv:math.DG/0703496 .MR 2391813 (the latest arXiv version contains important corrections compared to the published version).
51.Rieffel, Marc A., Leibniz seminorms for “Matrix algebras converge to the sphere”, arXiv:0707.3229[math.OA].
52.Rördam, M., Larsen, F., and Laustsen, N., An introduction to K-theory for C*-algebras, London Mathematical Society Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000. MR 1783408 (2001g:46001)
53.Rosenberg, Jonathan, Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. MR 1282290 (95e:19001)
54.Rudin, Walter, Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. MR 1157815 (92k:46001)
55.Sakai, T., Riemannian geometry, American Mathematical Society, Providence, RI, 1996. MR 97f:53001
56.Schweitzer, Larry B., A short proof that Mn(A) is local if A is local and Fréchet, Internat. J. Math. 3 (1992), no. 4, 581589. MR 1168361 (93i:46082)
57.Serre, J.-P., Algèbres de Lie semi-simples complexes, W. A. Benjamin, inc., New York-Amsterdam, 1966. MR 35 #6721
58.Skandalis, Georges, Approche de la conjecture de Novikov par la cohomologie cyclique (d'après A. Connes, M. Gromov et H. Moscovici), Séminaire Bourbaki, Vol. 1990/1991, Astérisque 201–203 (1991), Exp. No. 739, 299320 (1992), MR 1157846 (93i:57035)
59.Slebarski, Stephen, The Dirac operator on homogeneous spaces and representations of reductive Lie groups. I, Amer. J. Math. 109 (1987), no. 2, 283301. MR 882424 (89a:22028)
60.Steinacker, Harold, Quantized gauge theory on the fuzzy sphere as random matrix model, Nuclear Phys. B 679 (2004), no. 1–2, 6698, arXiv:hep-th/0307075. MR 2033774 (2004k:81409)
61.Taylor, Michael E., Noncommutative harmonic analysis, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR 852988 (88a:22021)
62.Valtancoli, P., Projectors for the fuzzy sphere, Modern Phys. Lett. A 16 (2001), no. 10, 639645, arXiv:hep-th/0101189.MR 1833119 (2002m:58012)
63.Valtancoli, P., Projectors, matrix models and noncommutative monopoles, Internat. J. Modern Phys. A 19 (2004), no. 27, 46414657, arXiv:hep-th/0404045. MR 2100603 (2005k:81348)
64.Warner, Frank W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York, 1983, Corrected reprint of the 1971 edition. MR 722297 (84k:58001)
65.Weaver, N., Lipschitz Algebras, World Scientific, Singapore, 1999. MR 1832645 (2002g:46002)
66.Wegge-Olsen, N. E., K-theory and C*-algebras, The Clarendon Press Oxford University Press, New York, 1993. MR 1222415 (95c:46116)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed