Skip to main content Accessibility help

Twisted K-theory constructions in the case of a decomposable Dixmier-Douady class

  • Antti J. Harju (a1) and Jouko Mickelsson (a2)


Twisted K-theory on a manifold X, with twisting in the 3rd integral cohomology, is discussed in the case when X is a product of a circle and a manifold M. The twist is assumed to be decomposable as a cup product of the basic integral one form on and an integral class in H2(M,ℤ). This case was studied some time ago by V. Mathai, R. Melrose, and I.M. Singer. Our aim is to give an explicit construction for the twisted K-theory classes using a quantum field theory model, in the same spirit as the supersymmetric Wess-Zumino-Witten model is used for constructing (equivariant) twisted K-theory classes on compact Lie groups.



Hide All
AtSe.Atiyah, M.F. and Segal, G.: Twisted K-theory. Ukr. Mat. Visn. 1(3) (2004), 287330; translation in Ukr. Math. Bull. 1(3) (2004), 291-334.
BGV.Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. SpringerVerlag, 2004.
Bi.Bismut, J.-M.: Localization formulas, superconnections, and the index theorem for families. Comm. Math. Phys. 103(1) (1986), 127166.
BCMMS.Bouwknegt, P., Carey, A., Mathai, V., Murray, M., and Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Comm. Math. Phys. 228(1) (2002), 1745.
CMM.Carey, A., Mickelsson, J., and Murray, M.: Index theory, gerbes, and Hamiltonian quantization. Comm. Math. Phys. 183(3) (1997), 707722.
CMW.Carey, A. L., Mickelsson, J., and Wang, Bai-Ling: Differential twisted K-theory and applications. J. Geom. Phys. 59(5) (2009), 632653.
DD.Dixmier, J. and Douady, A.: Champs continus d'espaces hilbertiens et de C *-algèbres. Bull. Soc. Math. France 91 (1963), 227284.
DK.Donovan, P. and Karoubi, M.: Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. 38 (1970), 525.
FHT.Freed, D. S., Hopkins, M., and Teleman, C.: Twisted equivariant K-theory with complex coefficients. J. Topol. 1(1) (2008), 1644.
FHT2.Freed, D. S., Hopkins, M., and Teleman, C.: Loop groups and twisted K-theory II, Amer. Math. Soc. 26 (2013), 595644.
Lott.Lott, John: Higher-degree analogs of the determinant line bundle. Comm. Math. Phys. 230(1) (2002), 4169.
MMS.Mathai, V., Melrose, R.B., and Singer, I.M.: The index of projective families of elliptic operators: the decomposable case. Astérisque 328 (2009), 255296.
Mi.Mickelsson, J.: Gerbes, (twisted) K-theory, and the supersymmetric WZW model. Infinite dimensional groups and manifolds, 93-107, IRMA Lect. Math. Theor. Phys. 5, de Gruyter, Berlin, 2004.
MP.Mickelsson, J. and Pellonpää, J.-P.: Families Index Theorem in Supersymmetric WZW Model and Twisted K-Theory: The SU(2) Case. Comm. Math. Phys. 271 (2007), 775789.
PS.Pressley, A. and Segal, G.: Loop Groups, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1986.
RR.Raeburn, I. and Rosenberg, J.: Crossed products of continuous-trace C*-algebras by smooth actions. Trans. Amer. Math. Soc. 305(1) (1988), 145.
Ro.Rosenberg, J.: Continuous-trace algebras from the bundle theoretic point of view. J. Austral. Math. Soc. Ser. A 47(3) (1989), 368381.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed