Skip to main content Accessibility help

Thom isomorphism and push-forward map in twisted K-theory

  • Alan L. Carey (a1) and Bai-Ling Wang (a2)


We establish the Thom isomorphism in twisted K-theory for any real vector bundle and develop the push-forward map in twisted K-theory for any differentiable map f : XY (not necessarily K-oriented). We also obtain the wrong way functoriality property for the push-forward map in twisted K-theory. For D-branes satisfying Freed-Witten's anomaly cancellation condition in a manifold with a non-trivial B-field, we associate a canonical element in the twisted K-group to get the so-called D-brane charges.



Hide All
1. Atiyah, M., Hirzebruch, F. Vector bundles and homogeneous spaces, Proceedings of Symposium in Pure Mathematics, Vol. 3, 738. Am. Math. Soc. 1961
2. Atiyah, M., Segal, G. Twisted K-theory, preprint
3. Bouwknegt, P., Evslin, J., Mathai, V. T-Duality: Topology Change from H-flux. Commun. Math. Phys. 249 (2004) 383415
4. Berline, N., Getzler, E., Vergne, M. Heat kernels and Dirac operators, Springer-Verlag. Berlin, 1992
5. Bismut, J.M. Local index theory, eta invariants and holomorphic torsion: a survey. Surveys in differential geometry, Vol. III, 176, Int. Press, Boston, MA, 1998
6. Bouwknegt, P., Dawson, P., Ridout, D. D-branes on group manifolds and fusion rings, JHEP 0212 (2002) 065
7. Bouwknegt, P., Carey, A., Mathai, V., Murray, M., Stevenson, D. Twisted K-theory and K-theory of bundle gerbes. Comm. Math. Phys. Vol. 228 no. 1, 1745, 2002
8. Bouwknegt, P., Mathai, V. D-branes, B-fields and twisted K-theory, J. High Energy Phys. 03 (2000) 007, hep-th/0002023 D-Branes, RR-Fields and Duality on Noncommutative Manifolds hep-th/0607020
9. Carey, A., Johnson, S., Murray, M., Stevenson, D., Wang, B.L. Bundle gerbes for Chern-Simons and Wess-Zumino-Witten theories, Comm. Math. Phys. Vol. 259 No. 3 577613, 2005
10. Carey, A., Wang, B.L. On the relationship of gerbes to the odd families index theorem, preprint, math.DG/0407243
11. Carey, A., Wang, B.L. Fusion of Symmetric D-branes and Verlinde ring, preprint,
12. Connes, A., Skandalis, G. The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20 (1984), no. 6, 11391183
13. Donavan, P., Karoubi, M. Graded Brauer groups and K-theory with lcoal coefficients, Publ. Math. de IHES, Vol 38, 525, 1970
14. Freed, D., Hopkins, M.J. and Teleman, C. Twisted K-theory and Loop Group Representations, math.AT/0312155, preprint
15. Freed, D., Witten, E. Anomalies in String Theory with D-Branes, hep-th/9907189
16. Felder, G., Frohlich, J., Fuchs, J., Schweigert, C. The geometry of WZW branes. J. Geom. Phys. 34 (2000), no. 2, 162190
17. Gaberdiel, M., Gannon, T., Roggenkamp, D. The D-branes of SU(n), JHEP 0407 (2004) 015
18. Gawedzki, K. and Reis, N. WZW branes and gerbes. Rev. Math. Phys. 14 (2002), no. 12, 12811334
19. Kapustin, A. D-branes in a topologically non-trivial B-field, Adv. Theor. Math. Phys. 4 (2001) 127, hep-th/9909089
20. Karoubi, M. K-theory, an introduction. Grundlehren der math. Wiss. Nr 226. Springer Verlag (1978)
21. Lawson, H. B., Michelsohn, M-L Spin Geometry. Princeton University Press, 1989
22. Maldacena, J., Seiberg, N., Moore, G. Geometrical interpretation of D-branes in gauged WZW models. J. High Energy Phys. 2001, no. 7. hep-th/0105038
23. Mathai, V., Melrose, R., Singer, I. The index of projective families of elliptic operators, Geom. Topol. 9(2005) 341373
24. Mathai, V., Stevenson, D. Chern character in twisted K-theory: equivariant and holomorphic cases, Commun. Math. Phys. 228 (2002) 1749
25. Gerbes, J. Mickelsson, (twisted) K-theory, and the supersymmetric WZW model. Infinite dimensional groups and manifolds, 93107, IRMA Lect. Math. Theor. Phys., 5, de Gruyter, Berlin, 2004
26. Murray, M. K. Bundle gerbes, J. London Math. Soc. (2) 54 (1996), no. 2, 403416
27. Murray, M. k., Singer, M. A. Singer Gerbes, Clifford modules and the index theorem. Ann. Global Anal. Geom. 26 (2004), no. 4, 355367
28. Parker, E. The Brauer group of Graded continuous trace C*-algebras. Trans. of Amer. Math. Soc., Vol 308, No. 1, 1988, 115132
29. Parker, E. Graded continuous trace C*-algebras and duality. Operator algebras and topology (Craiova, 1989), 130145, Pitman Res. Notes Math. Ser., 270
30. Pressley, A., Segal, G. Loop groups, Oxford University Press, Oxford, 1988
31. Rosenberg, J. Continuous-trace algebras from the bundle-theoretic point of view. Jour. of Australian Math. Soc. Vol A 47, 368381, 1989
32. Schafer-Nameki, S. K-theoretical boundary rings in N = 2 coset models. Nucl. Phys. B 706 (2005) 531. hep-th/0408060
33. Segal, G. Equivariant K-theory Publications Math. de IHES, Vol. 34, 129151, 1968
34. Tu, J., Xu, P., Laurent-Gengoux, C. Twisted K-theory of differentiable stacks, Ann. Sci. Ecole Norm. Sup. (4) Vol 37, 841910, 2004
35. Witten, E. D-branes and K-theory J. High Energy Phys. 1998, no. 12, Paper 19
36. Witten, E. Overview of K-theory applied to strings, Int. J. Mod. Phys. A16 (2001) 693, hep-th/0007175



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed