Skip to main content Accessibility help
×
Home

Relative subgroups in Chevalley groups

  • R. Hazrat (a1), V. Petrov (a2) and N. Vavilov (a3)

Abstract

We finish the proof of the main structure theorems for a Chevalley group G(Φ, R) of rank ≥ 2 over an arbitrary commutative ring R. Namely, we prove that for any admissible pair (A, B) in the sense of Abe, the corresponding relative elementary group E(Φ,R, A, B) and the full congruence subgroup C(Φ, R, A, B) are normal in G(Φ, R) itself, and not just normalised by the elementary group E(Φ, R) and that [E (Φ, R), C(Φ, R, A, B)] = E, (Φ, R, A, B). For the case Φ = F4 these results are new. The proof is new also for other cases, since we explicitly define C (Φ, R, A, B) by congruences in the adjoint representation of G (Φ, R) and give several equivalent characterisations of that group and use these characterisations in our proof.

Copyright

References

Hide All
1.Abe, E., Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), no.3, 474494.
2.Abe, E., Chevalley groups over commutative rings, Proc. Conf. Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo (1989), 123.
3.Abe, E., Normal subgroups of Chevalley groups over commutative rings, Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math. 83 (1989), 117.
4.Abe, E., Chevalley groups over commutative rings. Normal subgroups and automorphisms, Second International Conference on Algebra (Barnaul, 1991), Contemp. Math. 184 (1995), 1323.
5.Abe, E., Suzuki, K., On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. J. 28 (1976), no.1, 185198.
6.Bak, A., The stable structure of quadratic modules, Thesis Columbia Univ., 1969.
7.Bak, A., Hazrat, R., Vavilov, N., Localization-completion strikes again: relative K1 is nilpotent by abelian, J. of Pure and Appl. Algebra 213 (2009), 10751085
8.Bak, A., Hazrat, R., Vavilov, N., Structure of hyperbolic unitary groups II. Normal subgroups, To appear.
9.Bak, A., Vavilov, N., Normality for elementary subgroup functors, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 3547.
10.Bak, A., Vavilov, N., Structure of hyperbolic unitary groups I. Elementary subgroups, Algebra Colloq. 7 (2000), no. 2, 159196.
11.Bak, A., Vavilov, N., Cubic form parameters, preprint, 2001.
12.Bass, H., Unitary algebraic K-theory, Lecture Notes Math. 343 (1973), 57265.
13.Borewicz, Z. I., Vavilov, N. A., The distribution of subgroups in the full linear group over a commutative ring, Proc. Steklov Institute Math. 3 (1985), 2746.
14.Carter, R. W., Simple groups of Lie type, Wiley, London et al. 1972.
15.Costa, D. L., Keller, G. E., Radix redux: normal subgroups of symplectic groups, J. reine angew. Math. 427 (1992), 51105.
16.Costa, D. L., Keller, G. E., On the normal subgroups of G(Φ, R)2(A), Trans. Amer. Math. Soc. 351 (1999), no.12, 50515088.
17.Hahn, A. J., O'Meara, O. T., The Classical Groups and K-Theory, Springer, Berlin 1989.
18.Hazrat, R., Dimension theory and nonstable K1 of quadratic modules, K-Theory 27 (2002), no. 4, 293328.
19.Hazrat, R., Vavilov, N., K1 of Chevalley groups are nilpotent, J. of Pure and Appl. Algebra 179 (2003), 99116.
20.Hazrat, R., Vavilov, N., Bak's work on the K-theory of rings J. K-Theory, 4 (2009), 165.
21.Hurley, J. F., Ideals in Chevalley algebras, Trans. Amer. Math. Soc. 137 (1969), 245258.
22.Hurley, J. F., Some normal subgroups of elementary subgroups of Chevalley groups over rings, Amer. J. Math. 93 (1971), 10591069.
23.Kopeiko, V., The stabilisation of symplectic groups over polynomial rings, Math. USSR Sb. 34 (1978), 655669.
24.Fuan, Li, The structure of symplectic group over arbitrary commutative rings, Acta Math. Sinica, New Series 3 (1987), no.3, 247255.
25.Fuan, Li, The structure of orthogonal groups over arbitrary commutative rings, Chinese Ann. Math. 10 (1989), no.3, 341350.
26.Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. ser. 4, 2 (1969), 162.
27.Petrov, V., Overgroups of unitary groups, K-Theory 29 (2003), no. 3, 147174.
28.Petrov, V. A., Odd unitary groups, J. Math. Sci. 130 (2003), no. 3, 47524766.
29.Petrov, V. A., Stavrova, A. K., Elementary subgroups of isotropic reductive groups, St. Petersburg Math. J. 20 (2008), no. 3 (Russian, English translation pending, see also PDMI preprint 1 (2008), 120).
30.Stein, M. R., Chevalley groups over commutative rings, Bull. Amer. Math. Soc. 77 (1971), 247252.
31.Stein, M. R., Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), no.4, 9651004.
32.Stein, M. R., Relativizing functors on rings and algebraic K-theory, J. Algebra 19 (1971), no.1, 140152.
33.Stepanov, A. V., On the normal structure of the general linear group over a ring, J. Math. Sci. 95 (1999), no.2, 21462155.
34.Stepanov, A., Vavilov, N., Decomposition of transvections: a theme with variations, K-Theory 19 (2000), 109153.
35.Stepanov, A. V., Vavilov, N. A., Standard commutator formulae, Vestnik Saint-Petersburg State Univ., ser.1 (2008), no.1, 914 (Russian, English translation pending).
36.Suslin, A. A., On the structure of the general linear group over polynomial rings, Soviet Math. Izv. 41 (1977), no. 2503516.
37.Suslin, A. A., Kopeiko, V. I., Quadratic modules and orthogonal groups over polynomial rings, J. Sov. Math. 20 (1985), no.6, 26652691.
38.Suzuki, K., Normality of the elementary subgroups of twisted Chevalley groups over commutative rings, J. Algebra 175 (1995), no.3, 526536.
39.Taddei, G., Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau, Contemp. Math. 55 II (1986), 693710.
40.Vaserstein, L. N., On the normal subgroups of GLn over a ring, Lecture Notes Math. 854 (1981), 456465.
41.Vaserstein, L. N., On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. J. 36 (1986), no.5, 219230.
42.Vavilov, N., Structure of Chevalley groups over commutative rings, Non-associative algebras and related topics, (Hiroshima, 1990), World Scientific Publishing, London et al., (1991), 219335.
43.Vavilov, N., An A3-proof of structure theorems for Chevalley groups of types E6 and E7, Int. J. Algebra Comput. 17 (2007), no.5–6, 12831298.
44.Vavilov, N. A., Gavrilovich, M. R., An A2-proof of structure theorems for Chevalley groups of types E6 and E7, St.-Petersburg Math. J. 16 (2005), no.4, 649672.
45.Vavilov, N. A., Gavrilovich, M. R., Nikolenko, S. I., Structure of Chevalley groups: the Proof from the Book, J. Math. Sci. 140 (2006), no.5, 626645.
46.Vavilov, N. A., Nikolenko, S. I., An A2-proof of structure theorems for Chevalley groups of type F4, St. Petersburg Math. J. 20 (2008), no. 3 (Russian, English translation pending).
47.Vavilov, N. A., Plotkin, E. B., Net subgroups of Chevalley groups, J. Sov. Math. 19 (1982), no.1, 10001006.
48.Vavilov, N. A., Plotkin, E. B., Chevalley groups over commutative rings. I. Elementary calculations, Acta Appl. Math. 45 (1996), 73115.
49.Vavilov, N. A., Stavrova, A. K., Basic reductions in the description of normal subgroups, J. Math. Sci. 349 (2007), 3052 (Russian, English translation pending).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed