Skip to main content Accessibility help
×
Home

The noncommutative geometry of k-graph C*-algebras

  • David Pask (a1), Adam Rennie (a2) (a3) and Aidan Sims (a4)

Abstract

This paper is comprised of two related parts. First we discuss which k-graph algebras have faithful traces. We characterise the existence of a faithful semifinite lower-semicontinuous gauge-invariant trace on C* (Λ) in terms of the existence of a faithful graph trace on Λ.

Second, for k-graphs with faithful gauge invariant trace, we construct a smooth (k,∞)-summable semifinite spectral triple. We use the semifinite local index theorem to compute the pairing with K-theory. This numerical pairing can be obtained by applying the trace to a KK-pairing with values in the K-theory of the fixed point algebra of the Tk action. As with graph algebras, the index pairing is an invariant for a finer structure than the isomorphism class of the algebra.

Copyright

References

Hide All
BPRS. Bates, T., Pask, D., Raeburn, I. and Szymanski, W., The C*-Algebras of Row -Finite Graphs, New York J. Math. 6 (2000), 307324. BCPRSW (line 19 page 39)
BCPRSW. Benemeur, M-T., Carey, A., Phillips, J., Rennie, A., Sukochev, F., Woj-ciechowski, K., An Analytic Approach to Spectral Flow in von Neumann Algebras, in ‘Analysis, Geometry and Topology of Elliptic Operators-Papers in Honour of K. P. Wojciechowski’, World Scientific, 2006, 297352
CPS2. Carey, A., Phillips, J. and Sukochev, F., Spectral Flow and Dixmier Traces Advances in Mathematics, 173 (2003), 68113
CPRS1. Carey, A., Phillips, J., Rennie, A. and Sukochev, F., The Hochschild Class of the Chern Character of Semifinite Spectral Triples, Journal of Functional Analysis 213 (2004), 111153
CPRS2. Carey, A., Phillips, J., Rennie, A. and Sukochev, F., The Local Index Theorem in Semifinite von Neumann Algebras I: Spectral Flow, Advances in Mathematics 202 (2006), 451516
CPRS3. Carey, A., Phillips, J., Rennie, A. and Sukochev, F., The Local Index Theorem in Semifinite von Neumann Algebras II: The Even Case, Advances in Mathematics 202 (2006) 517554
CPRS4. Carey, A., Phillips, J., Rennie, A., Sukochev, F. The Chern Character ofSemifinite Spectral Triples, math.OA/0611227
C. Connes, A., Noncommutative Geometry, Academic Press, 1994
CM. Connes, A. and Moscovici, H., The Local Index Formula in Noncommutative Geometry, GAFA 5 (1995), 174243
D. Dixmier, J., Von Neumann Algebras, North-Holland, 1981
E. Evans, D. G., On Higher-rank Graph C*-Algebras, Ph.D. Thesis, Univ. Wales, 2002
FK. Fack, T. and Kosaki, H., Generalised s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986), 269300
FS. Fowler, N. J. and Sims, A., Product systems over right-angled Artin semigroups, Trans. Amer. Math. Soc. 354(2002), 14871509
GGISV. Gayral, V., Gracia-Bondía, J.M., Iochum, B., Schücker, T. and Varilly, J.C., Moyal Planes are Spectral Triples, Comm. Math. Phys. 246 (2004), 569623
GVF. Gracia-Bondía, J. M., Varilly, J. C. and Figueroa, H., Elements of Noncommutative Geometry, Birkhauser, Boston, 2001
HR. Higson, N. and Roe, J., Analytic K-Homology, Oxford University Press, 2000
H. Hjelmborg, J. v.B., Purely infinite and stable C*-algebras of graphs and dynamical systems, Ergod. Th. & Dynam. Sys. 21 (2001), 17891808
KNR. Kaad, J., Nest, R., Rennie, A., KK-theory and spectral flow in von Neumann algebras, math.OA/0701326
K. Kasparov, G. G., The Operator K-Functor and Extensions of C*-Algebras, Math. USSR. Izv. 16 (1981), 513572
KP. Kumjian, A. and Pask, D., Higher rank graph C*-algebras, New York J. Math. 6 (2000), 120
KPR. Kumjian, A., Pask, D. and Raeburn, I., Cuntz-Krieger Algebras of Directed Graphs, Pacific J. Math. 184 (1998), 161174
KPRR. Kumjian, A., Pask, D., Raeburn, I. and Renault, J., Graphs, Groupoids and Cuntz-Krieger Algebras, J. Funct. Anal. 144(1997), 505541
L. Lance, E. C., Hilbert C*-Modules, Cambridge University Press, Cambridge, 1995
La. Landi, G., An Introduction to Noncommutative Spaces and their Geometries, Lecture Notes in Physics, New Series 51, Springer-Verlag, Berlin, 1997
M. Mallios, A., Topological Algebras, Selected Topics, Elsevier Science Publishers B.V., 1986
PR. Pask, D. and Raeburn, I., On the K-Theory of Cuntz-Krieger Algebras, Publ. RIMS, Kyoto Univ., 32(1996), 415443
PRRS. Pask, D., Raeburn, I., Rørdam, M. and Sims, A., Rank-2 graphs whose C*-algebras are direct limits of circle algebras, J. Funct. Anal. 239 (2006), 137178
PRen. Pask, D. and Rennie, A., The Noncommutative Geometry of Graph C*-Algebras I: The Index Theorem, J. Funct. Anal. 233 (2006), 92134
PhR. Phillips, J. and Raeburn, I., An Index Theorem for Toeplitz Operators with Noncommutative Symbol Space, J. Funct. Anal. 120 (1994), 239263
RSY. Raeburn, I., Sims, A., and Yeend, T., Higher-rank graphs and their C* -algebras Proc. Edinb. Math. Soc. 46 (2003), 99115
RW. Raeburn, I. and Williams, D. P., Morita Equivalence and Continuous-Trace C*-Algebras, Math. Surveys & Monographs, vol. 60, Amer. Math. Soc., Providence, 1998
RSz. Raeburn, I. and Szymanski, W., Cuntz-Krieger Algebras of Infinite Graphs and Matrices, Trans. Amer. Math. Soc. 356 (2004), 3959
R1. Rennie, A., Smoothness and Locality for Nonunital Spectral Triples, K-theory, 28 (2003), 127165
R2. Rennie, A., Summability for Nonunital Spectral Triples, K-theory 31 (2004), 71100
S. Schweitzer, Larry B., A Short Proof that Mn(A) is local if A is Local and Fréchet, Int. J. math. 3 (1992), 581589
Si. Sims, A., Gauge-invariant ideals in the C*-algebras of finitely aligned higher-rank graphs, Canad. J. math, Canad. J. Math. 58 (2006), 12681290
T. Tomforde, M., The ordered K0-group of a graph C*-algebra, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 1925

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed