Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-n2wdk Total loading time: 0.565 Render date: 2021-04-22T15:31:49.812Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A residue formula for the fundamental Hochschild class on the Podleś sphere

Published online by Cambridge University Press:  07 August 2013

Get access

Abstract

The fundamental Hochschild cohomology class of the standard Podleś quantum sphere is expressed in terms of the spectral triple of Dąabrowski and Sitarz by means of a residue formula.

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Cartan, Henri, Eilenberg, Samuel, Homological algebra. Princeton University Press 1956.Google Scholar
2.Chakraborty, Partha Sarathi, Pal, Arupkumar, On equivariant Dirac operators for SUq (2). Proc. Indian Acad. Sci. Math. Sci. 116(4) (2006), 531541.CrossRefGoogle Scholar
3.Cherednik, Ivan, On q-analogues of Riemann's zeta function. Selecta Math. (N.S.) 7 (4) (2001), 447491.CrossRefGoogle Scholar
4.Connes, Alain, Moscovici, Henri, Type III and spectral triples. Traces in number theory, geometry and quantum fields, 5771, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008.Google Scholar
5.Connes, Alain, Noncommutative geometry, Academic Press 1994.Google Scholar
6.Connes, Alain, Moscovici, Henri, The local index formula in noncommutative geometry. Geom. Funct. Anal. 5(2) (1995), 174243.CrossRefGoogle Scholar
7.D'Andrea, Francesco, Dabrowski, Ludwik, Landi, Giovanni, The noncommutative geometry of the quantum projective plane. Rev. Math. Phys. 20(8) (2008), 9791006.CrossRefGoogle Scholar
8.Dabrowski, Ludwik, The local index formula for quantum SU(2). Traces in number theory, geometry and quantum fields, 99110, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008.Google Scholar
9.Dąbrowski, Ludwik, D'Andrea, Francesco, Landi, Giovanni, Wagner, Elmar, Dirac operators on all Podleś quantum spheres. J. Noncommut. Geom. 1(2) (2007), 213239.Google Scholar
10.Dabrowski, Ludwik, Sitarz, Andrzej, Dirac operator on the standard Podleś quantum sphere. Noncommutative geometry and quantum groups (Warsaw, 2001), 4958, Banach Center Publ. 61, Polish Acad. Sci., Warsaw, 2003.CrossRefGoogle Scholar
11.Decker, Wolfram, Greuel, Gert-Martin, Pfister, Gerhard, Schonemann, Hans, Singular - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2010).Google Scholar
12.Hadfield, Tom, Twisted cyclic homology of all Podleś quantum spheres. J. Geom. Phys. 57(2) (2007), 339351.CrossRefGoogle Scholar
13.Higson, Nigel, Meromorphic continuation of zeta functions associated to elliptic operators. Operator algebras, quantization, and noncommutative geometry, 129142, Contemp. Math. 365, Amer. Math. Soc., Providence, RI, 2004.CrossRefGoogle Scholar
14.Klimyk, Anatoli, Schmüdgen, Konrad, Quantum groups and their representations. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.Google Scholar
15.Krähmer, Ulrich, Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67 (1) (2004), 4959.CrossRefGoogle Scholar
16.Krähmer, Ulrich, On the Hochschild (co)homology of Quantum Homogeneous Spaces. Israel J. Math. 189 (2012), 237266.CrossRefGoogle Scholar
17.Krähmer, Ulrich, Poincaré duality in Hochschild (co)homology, New techniques in Hopf algebras and graded ring theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, pp. 117125.Google Scholar
18.Krähmer, Ulrich, The Hochschild cohomology ring of the standard Podleś quantum sphere. Arab. J. Sci. Eng. Sect. C Theme Issues 33(2) (2008), 325335.Google Scholar
20.Loday, Jean-Louis, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften 301, Springer-Verlag, Berlin, 1998.Google Scholar
21.Masuda, Tetsuya, Nakagami, Yoshiomi, Watanabe, Junsei, Noncommutative differential geometry on the quantum two sphere of Podleś I. An algebraic viewpoint. K-Theory 5(2) (1991), 151175.CrossRefGoogle Scholar
22.Neshveyev, Sergey, Tuset, Lars, A local index formula for the quantum sphere. Comm. Math. Phys. 254(2) (2005), 323341.CrossRefGoogle Scholar
23.Nest, Ryszard, Voigt, Christian, Equivariant Poincaré duality for quantum group actions. J. Funct. Anal. 258(5) (2010), 14661503.CrossRefGoogle Scholar
24.Podleś, Piotr, Quantum spheres. Lett. Math. Phys. 14(3) (1987), 193202.CrossRefGoogle Scholar
25.Schmüdgen, Konrad, Wagner, Elmar, Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. J. Reine Angew. Math. 574 (2004), 219235.Google Scholar
26.Sitarz, Andrzej, Equivariant spectral triples. Noncommutative geometry and quantum groups (Warsaw, 2001), 231263, Banach Center Publ. 61, Polish Acad. Sci., Warsaw, 2003.CrossRefGoogle Scholar
27.Ueno, Kimio, Nishizawa, Michitomo, Quantum groups and zeta-functions. Quantum groups (Karpacz, 1994), 115126, PWN, Warsaw, 1995.Google Scholar
28.den Bergh, Michel Van, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126(5) (1998), 13451348, Erratum: Proc. Amer. Math. Soc. 130 (9), 2809–2810 (electronic) (2002).CrossRefGoogle Scholar
29.Wagner, Elmar, On the noncommutative spin geometry of the standard Podleś sphere and index computations. J. Geom. Phys. 59(7) (2009), 9981016.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A residue formula for the fundamental Hochschild class on the Podleś sphere
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A residue formula for the fundamental Hochschild class on the Podleś sphere
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A residue formula for the fundamental Hochschild class on the Podleś sphere
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *