Skip to main content Accessibility help
×
Home

Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life

  • G. Pérez-Ponce de León (a1) and D.I. Hernández-Mena (a1) (a2)

Abstract

Digenea Carus, 1863 represent a highly diverse group of parasitic platyhelminths that infect all major vertebrate groups as definitive hosts. Morphology is the cornerstone of digenean systematics, but molecular markers have been instrumental in searching for a stable classification system of the subclass and in establishing more accurate species limits. The first comprehensive molecular phylogenetic tree of Digenea published in 2003 used two nuclear rRNA genes (ssrDNA = 18S rDNA and lsrDNA = 28S rDNA) and was based on 163 taxa representing 77 nominal families, resulting in a widely accepted phylogenetic classification. The genetic library for the 28S rRNA gene has increased steadily over the last 15 years because this marker possesses a strong phylogenetic signal to resolve sister-group relationships among species and to infer phylogenetic relationships at higher levels of the taxonomic hierarchy. Here, we have updated the database of 18S and 28S rRNA genes until December 2017, we have added newly generated 28S rDNA sequences and we have reassessed phylogenetic relationships to test the current higher-level classification of digeneans (at the subordinal and subfamilial levels). The new dataset consisted of 1077 digenean taxa allocated to 106 nominal families for 28S and 419 taxa in 98 families for 18S. Overall, the results were consistent with previous higher-level classification schemes, and most superfamilies and suborders were recovered as monophyletic assemblages. With the advancement of next-generation sequencing (NGS) technologies, new phylogenetic hypotheses from complete mitochondrial genomes have been proposed, although their power to resolve deep levels of trees remains controversial. Since data from NGS methods are replacing other widely used markers for phylogenetic analyses, it is timely to reassess the phylogenetic relationships of digeneans with conventional nuclear rRNA genes, and to use the new analysis to test the performance of genomic information gathered from NGS, e.g. mitogenomes, to infer higher-level relationships of this group of parasitic platyhelminths.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: G. Pérez Ponce de León, E-mail: ppdleon@ib.unam.mx

Footnotes

Hide All

Both authors contributed equally to this work.

Footnotes

References

Hide All
Atopkin, DM, Besprozvannykh, VV, Ha, DN, Nguyen, VH, Nguyen, VT and Chalenko, KP (2019) A new subfamily, Pseudohaploporinae subfam. n. (Digenea: Haploporidae), with morphometric and molecular analyses of two new species: Pseudohaploporus vietnamensis n. g., sp. n. and Pseudohaploporus planilizum n. g., sp. n. from Vietnamese mullet. Parasitology International 60, 1724.
Blasco-Costa, I, Cutmore, SC, Miller, TL and Nolan, MJ (2016) Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Systematic Parasitology 93, 295306.
Blend, CK, Karar, YM and Dronen, NO (2017) Revision of the Megaperidae Manter, 1934 n. comb. (Syn. Apocreadiidae Skrjabin, 1942) including a reorganization of the Schistorchiinae Yamaguti, 1942. Zootaxa 4358, 144.
Brabec, J, Kostadinova, A, Scholz, T and Littlewood, DTJ (2015) Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes:Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasites and Vectors 8, 336.
Bray, RA (2002) Superfamily Gymnophalloidea Odhner, 1905. pp. 245251 in Gibson, DI, Jones, A and Bray, RA (Eds) Keys to the Trematoda, Vol. 1. Wallingford, CABI Publishing.
Bray, RA (2008) Introduction and key to superfamilies. pp. 15 in Bray, RA, Gibson, DI and Jones, A (Eds) Keys to the Trematoda, Vol. 3. Wallingford, CABI Publishing.
Bray, RA, Cribb, TH, Littlewood, DTJ and Waeschenbach, A (2016) The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily. Folia Parasitologica 63, 013.
Bray, RA, Cribb, TH, Waeschenbach, A and Littlewood, DTJ (2014) Molecular evidence that the genus Cadenatella Dollfus, 1946 (Digenea: Plagiorchiida) belongs in the superfamily Haploporoidea Nicoll, 1914. Systematic Parasitology 89,1521.
Bray, RA, Gibson, DI and Jones, A (2008) Keys to the Trematoda, Vol. 3. Wallingford, UK, CAB International and The Natural History Museum. 824 pp.
Bray, RA, Waeschenbach, A, Cribb, TH, Weedall, GD, Dyal, P and Littlewood, DTJ (2009) The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: implications for their systematics and evolution. Acta Parasitologica 54, 310329.
Briscoe, AG, Bray, RA, Brabec, J and Littlewood, DTJ (2016) The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale. Parasitology International 65, 271275.
Brooks, DR, Bandoni, SM, MacDonald, CA and O'Grady, RT (1989) Aspects of the phylogeny of the Trematoda Rudolphi, 1808 (Platyhelminthes: Cercomeria). Canadian Journal of Zoology 67, 260924.
Brooks, DR, O'Grady, and Glen, R (1985) Phylogenetic analysis of the Digenea (Platyhelminthes: Cercomeria) with comments in their adaptive radiation. Canadian Journal of Zoology 63, 873883.
Chen, L, Feng, Y, Chen, HM, Wang, LX, Feng, HL, Yang, X, Mughal, MN and Fang, R (2016) Complete mitochondrial genome analysis of Clinostomum complanatum and its comparison with selected digeneans. Parasitology Research 115, 32493256.
Choudhury, A, Rosas-Valdez, R, Johnson, RC, Hoffman, B and de León G, Pérez-Ponce (2007) The phylogenetic position of Allocreadiidae (Trematoda: Digenea) from partial sequences of the 18S and 28S ribosomal RNA genes. Journal of Parasitology 93, 192196.
Cremonte, F, Gilardoni, C, Pina, S, Rodrigues, P and Ituarte, C (2015) Revision of the family Gymnophallidae Odhner, 1905 (Digenea) based on morphological and molecular data. Parasitology International 64, 202210.
Cribb, TH, Bray, RA, Littlewood, DTJ, Pichelin, S and Herniou, EA (2001a) The Digenea. pp. 168185 in Littlewood, DTJ and Bray, RA (Eds) Interrelationships of the Platyhelminthes. London, Taylor and Francis.
Cribb, TH, Bray, RA and Littlewood, DTJ (2001b) The nature and evolution of the association among digeneans, molluscs and fishes. International Journal for Parasitology 31, 9971011.
Cribb, TH, Bray, RA, Olson, PD and Littlewood, DTJ (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Advances in Parasitology 54, 197254.
Curran, SS, Pulis, EE, Andres, MJ and Overstreet, RM (2018) Two new species of Saccocoelioides (Digenea: Haploporidae) with phylogenetic analysis of the family, including species of Saccocoelioides from North, Middle, and South America. Journal of Parasitology 104, 221239.
Curran, SS, Tkach, VV and Overstreet, RM (2006) A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica 51, 238248.
Cutmore, SC, Bray, RA and Cribb, TH (2018) Two new species of Bacciger Nicoll, 1914 (Trematoda: Faustulidae) in species of Herklotsichthys Whitley (Clupeidae) from Queensland waters. Systematic Parasitology 95, 645654.
Cutmore, SC, Miller, TL, Bray, RA and Cribb, TH (2014) A new species of Plectognathotrema Layman, 1930 (Trematoda: Zoogonidae) from an Australian monacanthid, with a molecular assessment of the phylogenetic position of the genus. Systematic Parasitology 89, 237246.
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
Felsenstein, J (1978) The number of evolutionary trees. Systematic Zoology 27, 2733.
Fraija-Fernández, N, Olson, PD, Crespo, EA, Raga, JA, Aznar, FJ and Fernández, M (2015) Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA. International Journal for Parasitology 45, 167173.
Gibson, DI (1987) Questions in digenean systematics and evolution. Parasitology 95, 429460.
Gibson, DI (2002) Class Trematoda Rudolphi, 1808. pp. 13 in Gibson, DI, Jones, A and Bray, RA (Eds) Keys to the Trematoda, Vol. 1. Wallingford, CABI Publishing.
Gibson, DI and Bray, RA (1994) The evolutionary expansion and host–parasite relationships of the Digenea. International Journal for Parasitology 24, 12131226.
Gibson, DI, Jones, A and Bray, RA (Eds) (2002) Keys to the Trematoda, Vol. 1. Wallingford, UK, CAB International and The Natural History Museum, 521 pp.
Hall, KA, Cribb, TH and Barker, SC (1999) V4 region of small subunit rDNA indicates polyphyly of the Fellodistomidae (Digenea) which is supported by morphology and life-cycle data. Systematic Parasitology 43, 8192.
Heneberg, P, Sitko, J and Bizos, J (2016) Molecular and comparative morphological analysis of central European parasitic flatworms of the superfamily Brachylaimoidea Allison, 1943 (Trematoda: Plagiorchiida). Parasitology 143, 455–74.
Hernández-Mena, DI, García-Varela, M and Pérez-Ponce de León, G (2017) Filling the gaps within the classification of the Digenea Carus, 1963: systematic position of the Proterodiplostomatidae Dubois, 1936 within the superfamily Diplostomoidea Poirier, 1886, inferred from nuclear and mitochondrial DNA sequences. Systematic Parasitology 94, 833848.
Hernández-Mena, D, Mendoza-Garfias, B, Ornelas-García, CP and de León G, Pérez-Ponce (2016) Phylogenetic position of Magnivitellinum Kloss, 1966 and Perezitrema Barus & Moravec, 1967 (Trematoda: Plagiorchioidea: Macroderoididae) inferred from partial 28S rDNA sequences, with the establishment of Alloglossidiidae n. fam. Systematic Parasitology 93, 525538.
International Helminth Genomes Consortium (2019) Comparative genomics of the major parasitic worms. Nature Genetics 51, 163174.
Jones, A, Bray, RA and Gibson, DI (Eds) (2005) Keys to the Trematoda, Vol. 2. Wallingford, UK, CAB International and The Natural History Museum, 745 pp.
Kostadinova, A and Pérez-del Olmo, A (2014) The systematics of the Trematoda. pp. 2144 in Toldedo, R and Fried, B (Eds) Digenetic trematodes. Advances in experimental medicine and biology. New York, Springer Science+Business Media.
Lawton, SP, Hirai, H, Ironside, JE, Johnson, DA and Rollinson, D (2011) Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasites & Vectors 4, 131.
Le, TH, Humair, PF, Blair, D, Agatsuma, T, Littlewood, DTJ and McManus, DP (2001) Mitochondrial gene content, arrangement and composition compared in African and Asian schistosomes. Molecular Biochemical and Parasitology 117, 6171.
Littlewood, DTJ (2008) Platyhelminth systematics and the emergence of new characters. Parasite 15, 333341.
Littlewood, DTJ, Bray, RA and Waeschenbach, A (2015) Phylogenetic patterns of diversity in the cestodes and trematodes. pp. 304319 in Morand, S, Krasnov, BR and Littlewood, DTJ (Eds) Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics. Cambridge, Cambridge University Press.
Littlewood, DTJ, Lockyer, AE, Webster, BL, Johnston, DA and Le, TH (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogeneics and Evolution 39, 452467.
Liu, K, Raghavan, S, Nelesen, S, Linder, CR and Warnow, T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324, 15611564.
Liu, K, Warnow, T, Holder, M, Nelesen, S, Yu, J, Stamatakis, P and Linder, R (2012) SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology 61, 90106.
Locke, SA, Van Dam, A, Caffara, M, Pinto, HA, López-Hernández, D and Blana, CA (2018) Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. International Journal for Parasitology 48, 10431059.
Lockyer, AE, Olson, PD and Littlewood, DTJ (2003) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biological Journal of the Linnean Society 78, 155171.
Nolan, MJ, Curran, SS, Miller, TL, Cutmore, SC, Cantacessi, C and Cribb, TH (2015) Dollfustrema durum n. sp. and Heterobucephalopsis perardua n. sp. (Digenea: Bucephalidae) from the giant moray eel, Gymnothorax javanicus (Bleeker) (Anguilliformes: Muraenidae), and proposal of the Heterobucephalopsinae n. subfam. Parasitology International 64, 559570.
Nylander, JAA (2001) Taxon sampling in phylogenetic analysis: problems and strategies reviewed. Introductory Research Essay No. 1. Department of Systematic Zoology, Evolutionary Biology Centre, Uppsala University. 26 pp.
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA, and Littlewood, DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733755.
Olson, PD, Hughes, J and Cotton, JA (Eds) (2016) Next generation systematics. Systematics Association, special volume 85, Cambridge, Cambridge University Press, 347 pp.
Overstreet, RM, SS, Curran (2002) Superfamily Bucephaloidea Poche, 1907. pp. 67110 in Gibson, DI, Jones, A and Bray, RA (Eds) Keys to the Trematoda, Vol. 1. Wallingford, CABI Publishing.
Pearson, JC (1992) On the position of the digenean family Heronimidae: an inquiry into a cladistic classification of the Digenea. Systematic Parasitology 21, 81166.
Pérez-Ponce de León, G (2001) The diversity of digeneans (Platyhelminthes: Cercomeria: Trematoda) in vertebrates in Mexico. Comparative Parasitology 68, 18.
Pérez-Ponce de León, G and Nadler, S (2010) What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.
Rambaut, A (2016) FigTree v1.4.3. Available at http://tree.bio.ed.ac.uk/software/figtree/
Ronquist, F, Teslenko, M, van der Mark, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.
Sanderson, MJ (2016) Perspective: Challenges in assembling the ‘next generation’ Tree of Life. pp. 1327 in Olson, PD, Hughes, J and Cotton, JA (Eds) Next generation systematics. Systematics Association Special Volume Series. Cambridge: Cambridge University Press.
Silvestro, D and Michalak, I (2012) raxmlGUI: a graphical front-end for RaxML. Organisms Diversity and Evolution 12, 335.
Sokolov, SG, Atopkin, DM, Urabe, M and Gordeev, II (2018) Phylogenetic analysis of the superfamily Hemiuroidea (Platyhelminthes, Neodermata: Trematoda) based on partial 28S rDNA sequences. Parasitology doi: 10.1017/S0031182018001841..
Sun, D, Bray, RA, Yong, RQ, Cutmore, SC and Cribb, TH. 2014. Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber's chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia. Systematic Parasitology 88, 141–52.
Tkach, V, Gradda-Kazubska, B and Swiderski, Z (2001) Systematic position and phylogenetic relationships of the family Omphalometridae (Digenea, Plagiorchiida) inferred from partial lsrDNA sequences. International Journal for Parasitology 31, 8185.
Tkach, VV, Kudlai, O and Kostadinova, A (2016) Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology 46, 171185.
Tkach, V, Littlewood, DTJ, Olson, PD, Kinsella, JM and Swiderski, Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology 56, 115.
Tkach, V, Pawlowski, J and Mariaux, J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology 30, 8393.
Webster, BL and Littlewood, DTJ (2012) Mitochondrial gene order change in Schistosoma (Platyhelminthes: Digenea: Schistosomatidae). International Journal for Parasitology 42, 313321.
WoRMS (2018a) Opisthorchiidae Looss, 1899. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=108442 (accessed 15 November 2018).
WoRMS (2018b) Haploporoidea Nicoll, 1914. Availablet at http://www.marinespecies.org/aphia.php?p=taxdetails&id=468970 (accessed 15 November 2018).
WoRMS (2018c) Gymnophalloidea Odhner, 1905. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=468970 (accessed 15 November 2018).
Zarowiecki, MZ, Huyse, T and Littlewood, DTJ (2007) Making the most of mitochondrial genomes-markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes Digenea). International Journal for Parasitology 37, 1401–1148.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Pérez-Ponce de León and Hernández-Mena supplementary material
Pérez-Ponce de León and Hernández-Mena supplementary material 1

 Unknown (572 KB)
572 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed