Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T17:48:47.133Z Has data issue: false hasContentIssue false

Predicting the potential distribution of Vexillata (Nematoda: Ornithostrongylidae) and its hosts (Mammalia: Rodentia) within America

Published online by Cambridge University Press:  10 October 2012

E.A. Martínez-Salazar
Affiliation:
Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Calzada de la Revolución Mexicana S/N, Col. Tierra y Libertad, Apdo. Postal 12, 986000, Guadalupe, Zacatecas, Mexico Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
T. Escalante*
Affiliation:
Museo de Zoología ‘Alfonso L. Herrera’, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-399, 04510, México, D.F., Mexico
M. Linaje
Affiliation:
Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apdo. Postal 70-153, 04510, México, D.F., Mexico
J. Falcón-Ordaz
Affiliation:
Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas, Apdo. Postal 1-69, 42001, Pachuca, Hidalgo, Mexico

Abstract

Species distribution modelling has been a powerful tool to explore the potential distribution of parasites in wildlife, being the basis of studies on biogeography. Vexillata spp. are intestinal nematodes found in several species of mammalian hosts, such as rodents (Geomyoidea) and hares (Leporidae) in the Nearctic and northern Neotropical regions. In the present study, we modelled the potential distribution of Vexillata spp. and their hosts, using exclusively species from the Geomyidae and Heteromyidae families, in order to identify their distributional patterns. Bioclimatic and topographic variables were used to identify and predict suitable habitats for Vexillata and its hosts. Using these models, we identified that temperature seasonality is a significant environmental factor that influences the distribution of the parasite genus and its host. In particular, the geographical distribution is estimated to be larger than that predicted for its hosts. This suggests that the nematode has the potential to extend its geographical range and also its spectrum of host species. Increasing sample size and geographical coverage will contribute to recommendations for conservation of this host–parasite system.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.C. (2000) Nematode parasites of vertebrates. Their development and transmission. 2nd edn.578 pp. New York, C.A.B. International Publishing.CrossRefGoogle Scholar
Combes, C. (2005) The art of being a parasite. 291 pp. Chicago, The University of Chicago Press.Google Scholar
Cruz-Reyes, A. & Pickering-Lopez, J. (2006) Chagas disease in Mexico: an analysis of geographical distribution during the past 76 years – a review. Memorias do Instituto Oswaldo Cruz 10, 345354.CrossRefGoogle Scholar
Decker, K.H., Duszynski, D.W. & Patrick, M.J. (2001) Biotic and abiotic effects on endoparasites infecting Dipodomys and Perognathus species. Journal of Parasitology 87, 300307.CrossRefGoogle ScholarPubMed
Deter, J., Charbonnel, N. & Cosson, J.F. (2010) Evolutionary landscape epidemiology. pp. 173188in Morand, S. & Krasnov, B.R. (Eds) The biogeography of host–parasite interactions. New York, Oxford University Press.Google Scholar
Digiani, M.C., Kinsella, J.M. & Durette-Desset, M.C. (2007) Redescription, synonymy, and new records of Vexillata noviberiae (Dikmans, 1935) (Nematoda: Trichostrongylina), a parasite of rabbits Sylvilagus spp. (Leporidae) in the United States. Journal of Parasitology 93, 870873.CrossRefGoogle ScholarPubMed
Durette-Desset, M.C. (1985) Trichostrongyloides nematodes and their vertebrate hosts: reconstruction of the phylogeny of a parasitic group. pp. 239306in Baker, J.R. & Muller, R. (Eds) Advances in parasitology, vol. 24. London, UK, Academic Press.Google Scholar
Durette-Desset, M.C. & Digiani, M.C. (2005) Systematic position of some Nearctic Heligmosomoidea (Nematoda: Trichostrongylina) from the U.S. National Parasite Collection and their description. Journal of Parasitology 91, 893899.CrossRefGoogle ScholarPubMed
Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics 40, 677697.CrossRefGoogle Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.McC., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129151.CrossRefGoogle Scholar
Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution 1, 330342.CrossRefGoogle Scholar
Escalante, T., Martínez-Salazar, E.A., Falcón-Ordaz, J., Linaje, M. & Guerrero, R. (2011) Panbiogeographic analysis of Vexillata (Nematoda: Ornithostrongylidae) and its hosts (Mammalia: Rodentia). Acta Zoológica Mexicana (nueva serie) 27, 2546.CrossRefGoogle Scholar
Fayer, R. (2000) Global change and emerging infectious diseases. Journal of Parasitology 86, 11741181.Google ScholarPubMed
Fitzpatrick, M.C., Dunn, R.R. & Sanders, N.J. (2008) Data sets matters, but so do evolution and biology. Global Ecology and Biogeography 17, 562565.CrossRefGoogle Scholar
Fuentes, M.V., Sainz-Elipe, S. & Sáez-Durán, S. (2007) Geographical information systems as a new tool and methodology proposed for modeling mammal/helminth post-fire regeneration. The example of Parc Natural de la Serra Calderona (Comunitat Valenciana, Spain). Research and Reviews in Parasitology 67, 914.Google Scholar
Fuentes, M.V., Sainz-Elipe, S., Sáez-Durán, S. & Galán-Puchades, M.T. (2009) Helminth parasites of the post-fire regeneration process in Mediterranean ecosystems and preliminary small mammal/helminth GIS models. Revista Ibero-latinoamericana de Parasitologia 1, 4655.Google Scholar
García-Marmolejo, G., Escalante, T. & Morrone, J.J. (2008) Establecimiento de prioridades para la conservación de mamíferos terrestres neotropicales de México. Mastozoología Neotropical 15, 4165.Google Scholar
Giovanelli, J.G.R., Ferreira de Siqueira, M., Haddad, C.F.B. & Alexandrino, J. (2010) Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecological Modelling 221, 215224.CrossRefGoogle Scholar
Guo-Jing, Y., Vounatsou, P., Xiao-Nong, Z., Utzinger, J. & Tanner, M. (2005) A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. Acta Tropica 96, 117129.Google Scholar
Hafner, M.S., Demastes, J.W., Spradling, T.A. & Reed, D.L. (2003) Cophylogeny between pocket gophers and chewing lice. pp. 195220in Page, R.D.M. (Ed.) Tangled trees: phylogeny, cospeciation and coevolution. Chicago, Illinois, University of Chicago Press.Google Scholar
Hall, E.R. (1981) The mammals of North America. 2nd edn.600 pp. New York, John Wiley and Sons.Google Scholar
Haverkost, T.R., Gardner, S.L. & Peterson, T.A. (2010) Predicting the distribution of a parasite using the ecological niche model, GARP. Revista Mexicana de Biodiversidad 81, 895902.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Kulkarni, M.A., Desrochers, R.E. & Kerr, J.T. (2010) High resolution niche models of malaria vectors in Northern Tanzania: a new capacity to predict malaria risk? PLoS ONE 5, e9396.CrossRefGoogle ScholarPubMed
Lebarbenchon, C., Albespy, F., Brochet, A.-L., Grandhomme, V., Renaud, F., Fritz, H., Green, A.J., Thomas, F., van der Werf, S., Aubry, P., Guillemain, M. & Gauthier-Clerc, M. (2009) Spread of avian influenza viruses by common teal (Anas crecca) in Europe. PLoS ONE 4, e7289.CrossRefGoogle ScholarPubMed
Masuoka, P.M., Burke, R., Colaccico, M., Razuri, H., Hill, D. & Murrell, D. (2009) Predicted geographic ranges for North American sylvatic Trichinella species. Journal of Parasitology 95, 829837.CrossRefGoogle ScholarPubMed
Moffett, A., Shackelford, N. & Sarkar, S. (2007) Malaria in Africa: vector species' niche models and relative risk maps. PLoS ONE 2, e824.CrossRefGoogle ScholarPubMed
Morrone, J.J. (2001) Homology, biogeography and areas of endemism. Diversity and Distributions 7, 297300.CrossRefGoogle Scholar
Morrone, J.J. (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51, 467494.CrossRefGoogle ScholarPubMed
Olson, D.M., Dinerstein, E., Wikramanayake, E., Burgess, N., Powell, G., Underwood, E.C., D'Amico, J., Itoua, I., Strand, H., Morrison, J., Loucks, C., Allnutt, T., Ricketts, T.H., Kura, Y., Wettengel, W. & Kassem, K. (2001) Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933938.CrossRefGoogle Scholar
Pawar, S., Koo, M.S., Kelley, C., Ahmed, M.F., Chaudhuri, S. & Sarkar, S. (2007) Conservation assessment and prioritization of areas in northeast India: priorities for amphibians and reptiles. Biological Conservation 136, 346361.CrossRefGoogle Scholar
Peterson, A.T. (2006) Ecologic niche modelling and spatial patterns of disease transmission. Emerging Infectious Diseases 12, 18221826.CrossRefGoogle ScholarPubMed
Peterson, A.T. & Shaw, J. (2003) Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. International Journal for Parasitology 33, 919931.CrossRefGoogle ScholarPubMed
Peterson, A.T., Sánchez-Cordero, V., Beard, B. & Ramsey, J.M. (2002) Ecological niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases 8, 662667.CrossRefGoogle ScholarPubMed
Peterson, A.T., Bauer, J.T. & Mills, J.N. (2004) Ecological and geographic distribution of filovirus disease. Emerging Infectious Diseases 10, 4047.CrossRefGoogle ScholarPubMed
Peterson, A.T., Lash, R.R., Carroll, D.S. & Johnson, K.M. (2006) Geographic potential for outbreaks of Marburg hemorrhagic fever. American Journal of Tropical Medicine and Hygiene 75, 915.CrossRefGoogle ScholarPubMed
Phillips, S.J. & Dudík, M. (2008) Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecogeography 31, 161175.CrossRefGoogle Scholar
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) A maximum entropy modelling of species geographic distributions. Ecological Modelling 190, 231259.CrossRefGoogle Scholar
Poulin, R. & Morand, S. (2004) Parasite biodiversity. 224 pp. Washington, Smithsonian Institution Scholarly Press.Google Scholar
Rhode, K. & Hayward, C.J. (2000) Oceanic barriers as indicated by scombrid fiches and their parasites. International Journal for Parasitology 30, 579583.CrossRefGoogle Scholar
Sánchez-Cordero, V., Cirelli, V., Munguía, M. & Sarkar, S. (2005) Place prioritization for biodiversity representation using species' ecological niche modeling. Biodiversity Informatics 2, 1123.CrossRefGoogle Scholar
Sosa, F.V.de, J. (1981) Contribución al conocimiento de la historia natural de la tuza Pappogeomys tylorhynus tylorhynus (Rodentia: Geomyidae) en una zona semiárida. BSc thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México.Google Scholar
Sukhdeo, S.C., Sukhdeo, M.V.K., Black, M.B. & Vrijenhoek, R.C. (1997) The evolution of tissue migration in parasitic nematodes (Nematoda: Strongylida) inferred from a protein-coding mitochondrial gene. Biological Journal of the Linnean Society 61, 281298.CrossRefGoogle Scholar
Swenson, N.G. (2008) The past and future influence of geographic information systems on hybrid zone, phylogeographic and speciation research. Journal of Evolutionary Biology 21, 421434.CrossRefGoogle ScholarPubMed
Villa, R.B. & Cervantes, F.A. (2003) Los mamíferos de México. 140 pp. México, D.F., Grupo Editorial Iberoamericana.Google Scholar
Waltari, E. & Guralnick, R.P. (2009) Ecological niche modeling of montane mammals in the Great Basin. North America: examining past and present connectivity of species across basins and ranges. Journal of Biogeography 36, 148161.CrossRefGoogle Scholar
Waltari, E. & Perkins, S.L. (2010) In the hosts' footsteps? Ecological niche modelling and its utility in predicting parasite distributions. pp. 145157in Morand, S. & Krasnov, B.R. (Eds) The biogeography of host–parasite interactions. New York, Oxford University Press.Google Scholar
Wilson, D.E. & Reeder, D.M. (2005) Mammal species of the world: a taxonomic and geographic reference. 3rd edn.2142 pp. Baltimore, Maryland, Johns Hopkins University Press.CrossRefGoogle Scholar