Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-19T22:12:29.520Z Has data issue: false hasContentIssue false

Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters

Published online by Cambridge University Press:  01 June 2007

Juan T. Timi*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Funes 3350, (7600) Mar del Plata, Argentina
*
*Fax: +54-223-4753150 E-mail: jtimi@mdp.edu.ar

Abstract

The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature–salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host–parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.

Type
ICOPAXI Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelescu, V. (1982) Ecología trófica de la anchoíta del Mar Argentino (Engraulidae Engraulis anchoita). Parte II. Alimentación, comportamiento y relaciones tróficas en el ecosistema. Contribuciones del Instituto Nacional de Investigación y Desarrollo Pesquero 409, Mar del Plata, Argentina.Google Scholar
Aznar, F.J., Raga, J.A., Corcuera, J. & Monzón, F. (1995) Helminths as biological tags for franciscana (Pontoporia blainvillei) (Cetacea, Pontoporiidae) in Argentinian and Uruguayan waters. Mammalia 59, 427435.Google Scholar
Bakun, A. & Parrish, R.H. (1991) Comparative studies of coastal fish reproductive habitats: the anchovy (Engraulis anchoita) of the Southwestern Atlantic. ICES Journal of Marine Science 48, 343361.CrossRefGoogle Scholar
Cordo, H.D. (1986) Estudios biológicos sobre peces costeros con datos de campañas de investigación realizadas en 1981. III. La pescadilla de red (Cynoscion striatus). Publicaciones de la Comisión Técnica Mixta del Frente Marítimo 1, 1527.Google Scholar
Cousseau, M.B. & Perrotta, R.G. (1998) Peces marinos de Argentina. Biología, distribución, pesca. 1st edn. 163 pp. Mar del Plata, Argentina, Instituto Nacional de Investigación y Desarrollo Pesquero.Google Scholar
Cremonte, F. & Sardella, N. (1997) The parasitofauna of Scomber japonicus Houttuyn, 1782 (Pisces: Scombridae) in two zones of the Argentine Sea. Fisheries Research 31, 1–9.Google Scholar
Esch, G.W. & Fernández, J.C. (1993) A functional biology of parasitism. 1st edn. 337 pp. London, Chapman & Hall.CrossRefGoogle Scholar
González, R.A. & Kroeck, M.A. (2000) Enteric helminths of the shortfin squid Illex argentinus in San Matías Gulf (Argentina) as stock discriminants. Acta Parasitológica 45, 8993.Google Scholar
Guerrero, R.A. & Piola, R.P. (1997) Masas de agua en la Plataforma Continental. pp. 107–118 in Boschi, E.E. (Ed.) El Mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales. Contribuciones del Instituto Nacional de Investigación y Desarrollo Pesquero 998, Mar del Plata, Argentina.Google Scholar
Hoffmann, J.A.J., Núñez, M.N. & Piccolo, M.C. (1997) Características climáticas del Océano Atlántico Sudoccidental. pp. 163193in Boschi, E.E. (Ed.) El Mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales. Contribuciones del Instituto Nacional de Investigación y Desarrollo Pesquero 998, Mar del Plata, Argentina.Google Scholar
Lester, R.J.G. (1990) Reappraisal of the use of parasites for fish stock identification. Australian Journal of Marine and Freshwater Research 41, 855864.CrossRefGoogle Scholar
MacKenzie, K. (1983) Parasites as biological tags in fish population studies. Advances in Applied Biology 7, 251331.Google Scholar
MacKenzie, K. (2002) Parasites as biological tags in population studies of marine organisms: an update. Parasitology 124, S153–S163.CrossRefGoogle ScholarPubMed
MacKenzie, K. & Abaunza, P. (1998) Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fisheries Research 38, 45–56.CrossRefGoogle Scholar
MacKenzie, K. & Longshaw, M. (1995) Parasites of the hakes Merluccius australis and M. hubbsi in the waters around the Falkland Islands, southern Chile and Argentina, with an assessment of their potential value as biological tags. Canadian Journal of Fisheries and Aquatic Sciences 52, 213224.Google Scholar
Martos, P. (1989) Synopsis on the reproductive biology and early life history of Engraulis anchoita, and related environmental conditions in Argentine waters. The physical environment. pp. 1–2 in Second IOC Workshop on Sardine/Anchovy Recruitment Project (SARP) in the Southwest Atlantic. Montevideo, Uruguay, 21–23 August 1989. Workshop Report No. 65, Annex V.Google Scholar
Pietrock, M. & Marcogliese, D.J. (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology 19, 293299.CrossRefGoogle ScholarPubMed
Poulin, R. (2006) Variation in infection parameters among populations within parasite species: Intrinsic properties versus local factors. International Journal for Parasitology 36, 877885.Google Scholar
Poulin, R. & Morand, S. (1999) Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.CrossRefGoogle ScholarPubMed
Power, A.M., Balbuena, J.A. & Raga, J.A. (2005) Parasite infracommunities as predictors of harvest location of bogue (Boops boops L.): a pilot study using statistical classifiers. Fisheries Research 72, 229–239.Google Scholar
Prenski, L.B. & Angelescu, V. (1993) Ecología trófica de la merluza común (Merluccius hubbsi) del Mar Argentino. Parte 3. Consumo anual de alimento a nivel poblacional y su relación con la explotación de las pesquerías multiespecíficas. INIDEP Documento Científico 1. Contribuciones del Instituto Nacional de Investigación y Desarrollo Pesquero 847, Mar del Plata, Argentina.Google Scholar
Ramírez, F.C., Mianzán, H.W., Santos, B. & Viñas, M.D. (1989) Synopsis on the reproductive biology and early life history of Engraulis anchoita, and related environmental conditions in Argentine waters. Zooplankton. pp. 4–6 in Second IOC Workshop on Sardine/Anchovy Recruitment Project (SARP) in the Southwest Atlantic. Montevideo, Uruguay, 21–23 August 1989. Workshop Report No. 65, Annex V.Google Scholar
Rohde, K. (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514527.CrossRefGoogle Scholar
Rohde, K. (1999) Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work and what can parasites teach us about the causes of the gradients? Ecography 22, 593613.Google Scholar
Rohde, K. & Heap, M. (1998) Latitudinal differences in species and community richness and in community structure of metazoan endo- and ectoparasites of marine teleost fish. International Journal for Parasitology 28, 461–474.Google Scholar
Sardella, N.H. & Timi, J.T. (2004) Parasites of Argentine hake in the Argentine Sea: population and infracommunity structure as evidence for host stock discrimination. Journal of Fish Biology 65, 14721488.Google Scholar
Sardella, N.H., Mattiucci, S., Timi, J.T., Bastida, R., Rodriguez, D. & Nascetti, G. (2005) Corynosoma australe Johnston, 1937 and C. cetaceum Johnston & Best, 1942 (Acanthocephala: Polymorphidae) from marine mammals and fish in Argentinean waters: genetic differentiation and taxonomic status. Systematic Parasitology 61, 143–156.CrossRefGoogle Scholar
Timi, J.T. (2003) Parasites of Argentine anchovy in the Southwest Atlantic: latitudinal patterns and their use for discrimination of host populations. Journal of Fish Biology 63, 90–107.CrossRefGoogle Scholar
Timi, J.T. & Poulin, R. (2003) Parasite community structure within and across host populations of a marine pelagic fish: how repeatable is it? International Journal for Parasitology 33, 13531362.Google Scholar
Timi, J.T., Sardella, N.H. & Navone, G.T. (2001) Parasitic nematodes of Engraulis anchoita Hubbs et Marini, 1935 (Pisces: Engraulidae) off the Argentine and Uruguayan coasts, South West Atlantic. Acta Parasitologica 46, 186193.Google Scholar
Timi, J.T., Luque, J.L. & Sardella, N.H. (2005) Parasites of Cynoscion guatucupa along South American Atlantic coasts: evidence for stock discrimination. Journal of Fish Biology 67, 16031618.CrossRefGoogle Scholar
Williams, H.H., MacKenzie, K. & McCarthy, A.M. (1992) Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 2, 144–176.CrossRefGoogle Scholar