Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T19:05:55.562Z Has data issue: false hasContentIssue false

Infection levels of the cestode Hymenolepis diminuta in rat populations from Buenos Aires, Argentina

Published online by Cambridge University Press:  14 April 2015

D. Hancke*
Affiliation:
Laboratorio de Ecología de Roedores Urbanos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, 4° Piso Laboratorio 104 (C1428EHA), Buenos Aires, Argentina
O.V. Suárez
Affiliation:
Laboratorio de Ecología de Roedores Urbanos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, 4° Piso Laboratorio 104 (C1428EHA), Buenos Aires, Argentina

Abstract

Ecological studies on zoonotic parasites are crucial for the design and implementation of effective measures to prevent parasite transmission. The aim of this study was to evaluate factors such as season, landscape unit, rat sex and rat body length, affecting the abundance of the cestode Hymenolepis diminuta, a parasite of synanthropic rats, within an urban environment. A parasitological survey was undertaken on 169 rats from landscape units such as shantytowns, parklands, industrial–residential areas and scrap-metal yards in Buenos Aires, Argentina. The overall prevalence of H. diminuta was 21.3%, although the occurrence of this species in rats was not homogeneous. The abundance of H. diminuta, using a zero-inflated negative binomial model, was correlated with rat body length. In shantytowns, abundance levels were higher than other landscape units, largely due to differences in individual environmental characteristics and rat assemblages. The populations of arthropod intermediate hosts could be subjected to seasonal fluctuations and the degree of urbanization. Shantytowns are overcrowded urban marginal settlements with most inhabitants living in precarious conditions and supporting large populations of rats, thereby increasing the risk of zoonotic infection.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Madi, M.A., Behnke, J.M., Mikhail, M., Lewis, J.W. & Al-Kaabi, M.L. (2005) Parasite populations in the brown rat Rattus norvegicus from Doha, Qatar between years: the effect of host age, sex and density. Journal of Helminthology 79, 105111.Google Scholar
Alirol, E., Getaz, L., Stoll, B., Chappuis, F. & Loutan, L. (2011) Urbanization and infectious diseases in a globalised world. Lancet Infectious Diseases 10, 131141.Google Scholar
Arneberg, P. (2001) An ecological law and its macroecological consequences as revealed by studies of relationships between host densities and parasite prevalence. Ecography 24, 352358.Google Scholar
Arneberg, P. (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25, 8894.Google Scholar
Battersby, S.A., Parsons, R. & Webster, J.P. (2002) Urban rat infestation and the risk to public health. Journal of Environmental Health Research 1, 5765.Google Scholar
Behnke, J.M., Harris, P.D., Bajer, A., Barnard, C.J., Sherif, N., Cliffe, L., Hurst, J., Lamb, M., Rhodes, A., James, M., Clifford, S., Gilbert, F.S. & Zalat, S. (2004) Variation in the helminth community structure in spiny mice (Acomys dimidiatus) from four montane wadis in the St Katherine region of the Sinai Peninsula in Egypt. Parasitology 129, 379398.Google Scholar
Bradley, C.A. & Altizer, S. (2006) Urbanization and the ecology of wildlife diseases. Trends in Ecology and Evolution 22, 95102.Google Scholar
Bush, O., Lafferty, A.D., Lotz, J.M. & Shostak, A.W., (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
Cavia, R., Cueto, G.R. & Suárez, O.V. (2009) Changes in rodent communities according to the landscape structure in an urban ecosystem. Landscape and Urban Planning 90, 1119.Google Scholar
Colwell, D.D., Dantas-Torres, F. & Otranto, D. (2011) Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Veterinary Parasitology 182, 1421.Google Scholar
Deter, J., Chaval, Y., Galan, M., Berthier, K., Ribas Salvador, A., Casanova Garcia, J.C., Morand, S., Cosson, J.F. & Charbonnel, N. (2007) Linking demography and host dispersal to Trichuris arvicolae distribution in a cyclic vole species. International Journal for Parasitology 37, 813824.Google Scholar
Easterbrook, J.D., Kaplan, J.B., Vanasco, N.B., Reeves, W.K., Purcell, R.H., Kosoy, M.Y., Glass, G.E., Watson, J. & Klein, S.L. (2007) A survey of zoonotic pathogens carried by Norway rats in Baltimore. Maryland, USA. Epidemiology and Infection 135, 11921199.Google Scholar
Fernández, M.S., Cavia, R., Cueto, G.R. & Suárez, O.V. (2007) Implementation and evaluation of an integrated program for rodent control in a shanty town of Buenos Aires City, Argentina. EcoHealth 4, 271277.Google Scholar
Gómez Villafañe, I.E., Robles, M.R. & Busch, M. (2008) Helminth communities and host–parasite relationships in Argentine brown rat (Rattus norvegicus). Helminthologia 45, 127130.Google Scholar
Hancke, D. & Suárez, O.V. (2014) Environmental health education in schools as strategy for rodent control: an experience in a shantytown of Buenos Aires, Argentina. EcoHealth 11, 133140.Google Scholar
Hancke, D., Navone, G.T. & Suárez, O.V. (2011) Endoparasite community of Rattus norvegicus captured in an urban area of Argentina. Helminthologia 48, 167173.Google Scholar
Himsworth, C.G., Jardine, C.M., Parsons, K.L., Feng, A.Y.T. & Patrick, D.M. (2014) The characteristics of wild rat (Rattus spp.) populations from an inner-city neighborhood with a focus on factors critical to the understanding of rat-associated zoonoses. PLoS ONE 9, e91654.Google Scholar
Holland, C. (1987) Interspecific effects between Moniliformis (Acanthocephala), Hymenolepis (Cestoda) and Nippostrongylus (Nematoda) in the laboratory rat. Parasitology 94, 567581.Google Scholar
Iannacone Oliver, J. & Alvariño Flores, L. (2002) Helmintofauna de Rattus rattus (Linnaeus, 1758) y de Rattus norvegicus (Berkenhout, 1769) (Rodentia: Muridae) en el distrito de San Juan de Lugiracho, Lima – Perú. Revista Peruana de Medicina Experimental y Salud Pública 19, 136141.Google Scholar
Kataranovski, D., Kataranovski, M., Savic, I.R., Cakic, B., Soldatovic, B. & Matic, R. (1994) Morphometric and biochemical parameters as age indicators in the Norway rat (Rattus norvegicus Berk, 1769). Acta Veterinaria 44, 371378.Google Scholar
Kataranovski, M., Mirkov, I., Belij, S., Popov, A., Petrovic, Z., Gaci, Z. & Kataranovski, D. (2011) Intestinal helminths infection of rats (Rattus norvegicus) in the Belgrade area (Serbia): the effect of sex, age and habitat. Parasite 18, 189196.Google Scholar
Khalil, L.F., Jones, A. & Bray, R.A. (1994) Keys to the cestode parasites of vertebrates. 751 pp. Wallingford, CAB International.Google Scholar
Mafiana, C., Osho, M. & Sam-Wobo, S. (1997) Gastrointestinal helminth parasites of the black rat (Rattus rattus) in Abeokuta, southwest Nigeria. Journal of Helminthology 71, 217220.Google Scholar
Marangi, M., Zechini, B., Fileti, A., Quaranta, G. & Aceti, A. (2003) Hymenolepis diminuta infection in a child living in the urban area of Rome, Italy. Journal of Clinical Microbiology 41, 39943995.Google Scholar
Marsh, R.E. (1994) Roof rats. pp. B125B132 in Hyngstrom, S.E., Timm, R.M. & Larson, G.E. (Eds) Prevention and control of wildlife damage. Washington DC, University of Nebraska Coop Ext, US Department of Agriculture, and Great Plains Agriculture Council.Google Scholar
Minami, M., Lennert-Cody, C.E., Gao, W. & Roman-Verdesoto, M. (2007) Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing. Fisheries Research 84, 210221.Google Scholar
Morand, S. & Poulin, R. (1998) Density, body mass, and parasite species richness of terrestrial mammals. Evolutionary Ecology 12, 717727.Google Scholar
Morrill, A. & Forbes, M.R. (2012) Random parasite encounters coupled with condition-linked immunity of hosts generate parasite aggregation. International Journal for Parasitology 42, 701706.Google Scholar
Mowlavi, G.H., Mobedi, I., Mamishi, S., Rezaeian, M., Haghi Ashtiani, M.T. & Kashi, M. (2008) Hymenolepis diminuta (Rodolphi, 1819) infection in a child from Iran. Iranian Journal of Public Health 37, 120122.Google Scholar
Munroe, S.E.M., Avery, T.S., Shutler, D. & Dadswell, M.J. (2011) Spatial attachment-site preferences of macroectoparasites on Atlantic sturgeons Acipenser oxyrinchus in Minas Basin, Bay of Fundy, Canada. Journal of Parasitology 97, 377383.Google Scholar
Nødtvedt, A., Dohoo, I., Sanchez, J., Conboy, G., DesCĵteaux, L., Keefe, G., Leslie, K. & Campbell, J. (2002) The use of negative binomial modelling in a longitudinal study of gastrointestinal parasite burdens in Canadian dairy cows. Canadian Journal of Veterinary Research 66, 249257.Google Scholar
Patz, J.A., Graczyk, T.K., Geller, N. & Vittor, A.Y. (2000) Effects of environmental change on emerging parasitic diseases. International Journal for Parasitology 30, 13951405.Google Scholar
Patz, J.A., P., Daszak, Tabor, G.M., A., Alonso Aguirre, Pearl, M., Epsten, J., Wolfe, N.D., Kilpatrick, A.M., Foufopoulos, J., Molyneux, D., Bradley, D.J. & Working Group on Land Use Change and Disease Emergence. (2004) Unhealthy landscapes: policy recommendations pertaining to land use change and disease emergence. Environmental Health Perspectives 112, 10921098.Google Scholar
Pedersen, A.B. & Fenton, A (2007) Emphasizing the ecology in parasite community. Trends in Ecology and Evolution 22, 13161318.Google Scholar
Pilosof, S., Dick, C.W., Korine, C., Patterson, B.D. & Krasnov, B.R. (2012) Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism. PLoS ONE 7, e41487.Google Scholar
Polley, L. (2005) Navigating parasite webs and parasite flow: Emerging and re-emerging parasitic zoonoses of wildlife origin. International Journal for Parasitology 35, 12791294.Google Scholar
Poulin, R. (2004) Macroecological patterns of species richness in parasite assemblages. Basic and Applied Ecology 5, 423434.Google Scholar
Poulin, R. & George-Nascimento, M. (2007) The scaling of total parasite biomass with host body mass. International Journal for Parasitology 37, 359364.Google Scholar
R Development Core Team. (2013) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at http://www.R-project.org/ (accessed accessed 12 April 2014).Google Scholar
Roberts, L.S. & Janovy, J. (2009) Foundations of parasitology. 8th edn. 701 pp. New York, McGraw-Hill.Google Scholar
Robinson, W.H. (2005) Urban insects and arachnids. A handbook of urban entomology. 480 pp. Cambridge, UK, Cambridge University Press.Google Scholar
Rózsa, L., Reiczigel, J. & Majoros, G. (2000) Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.Google Scholar
Tarsitano, E. (2006) Interaction between the environment and animals in urban settings: integrated and participatory planning. Environmental Management 38, 799809.Google Scholar
Timm, R.M. (1994) Norway rats. pp. B125132 in Hyngstrom, S.E., Timm, R.M. & Larson, G.E. (Eds) Prevention and control of wildlife damage. Washington DC, University of Nebraska Coop Ext, US Department of Agriculture, and Great Plains Agriculture Council.Google Scholar
Traweger, D., Travnitzky, R., Moser, C., Walzer, C. & Bernatzky, G. (2006) Habitat preferences and distribution of the brown rat (Rattus norvegicus Berk.) in the city of Salzburg (Austria): implications for an urban rat management. Journal of Pest Science 79, 113125.Google Scholar
Wegner, S.J. & Freeman, M.C. (2008) Estimating species occurrence, abundance, and detection probability using zero-inflated distributions. Ecology 89, 29532959.Google Scholar
Wilson, K. & Grenfell, B.T. (1997) Generalized linear modelling for parasitologists. Parasitology Today 13, 3338.Google Scholar
Zain, S.N.M., Behnke, J.M. & Lewis, J.W. (2012) Helminth communities from two urban rat populations in Kuala Lumpur, Malaysia. Parasites & Vectors 5, 123.Google Scholar
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed effects models and extensions in ecology with R. 574 pp. New York, Springer.Google Scholar