Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T08:22:45.670Z Has data issue: false hasContentIssue false

Genotyping of Echinococcus granulosus from domestic animals and humans from Ardabil Province, northwest Iran

Published online by Cambridge University Press:  10 October 2012

A. Pezeshki
Affiliation:
Department of Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
L. Akhlaghi
Affiliation:
Department of Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
M. Sharbatkhori
Affiliation:
Laboratory Science Research Center, Golestan, University of Medical Sciences, Gorgan, Iran Department of Parasitology and Mycology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
E. Razmjou
Affiliation:
Department of Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
H. Oormazdi
Affiliation:
Department of Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
M. Mohebali
Affiliation:
Department of Parasitology and Mycology, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
A.R. Meamar*
Affiliation:
Department of Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
*
*Fax: +98 21 88622653 E-mail: ameamaer@sina.tums.ac.ir

Abstract

Cystic echinococcosis is endemic in Iran, particularly in Ardabil Province, where it causes health and economic problems. The genetic pattern of Echinococcus granulosus has been determined in most parts of Iran, except in this area. In the present investigation, 55 larval isolates were collected from humans (11), sheep (19), goats (4) and cattle (21). For analysis of the genetic characteristics of E. granulosus isolates, DNA sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes was applied. Fifty isolates were successfully analysed, with 92% (46) and 8% (4) identified as G1 and G3 genotypes, respectively. The sequence analyses of the isolates displayed nine characteristic profiles in cox1 sequences and eight characteristic profiles in nad1 sequences. Based on these results, the sheep strain (G1 genotype) was the most prevalent in humans, sheep, goats and cattle. The buffalo strain (G3 genotype) was not only demonstrated in sheep (1 isolate) and cattle (1 isolate), but also for the first time in two human isolates. These findings will provide information for local control of echinococcosis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, N. & Dalimi, A. (2006) Characterization of Echinococcus granulosus isolates from human, sheep and camel in Iran. Infection, Genetics and Evolution 6, 8590.CrossRefGoogle ScholarPubMed
Bowles, J. & McManus, D.P. (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972.CrossRefGoogle ScholarPubMed
Bowles, J. & McManus, D.P. (1994) Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans. The American Journal of Tropical Medicine and Hygiene 50, 3344.CrossRefGoogle ScholarPubMed
Bowles, J., Blair, D. & McManus, D.P. (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.CrossRefGoogle ScholarPubMed
Busi, M., Snabel, V., De Libelato, C. & D'Amelio, S. (2004) Molecular genotyping of Echinococcus granulosus hydatid cysts in Italy reveals the presence of three distinct genotypes. Parasitologia 46, 164.Google Scholar
Busi, M., Snabel, V., Varcasia, A., Garippa, G., Perrone, V., De Liberato, C. & D'Amelio, S. (2007) Genetic variation within and between G1 and G3 genotypes of Echinococcus granulosus in Italy revealed by multilocus DNA sequencing. Veterinary Parasitology 150, 7583.CrossRefGoogle Scholar
Dalimi, A., Motamedi, G., Hosseini, M., Mohammadian, B., Malaki, H., Ghamari, Z. & Ghaffari Far, F. (2002) Echinococcosis/hydatidosis in western Iran. Veterinary Parasitology 105, 161171.CrossRefGoogle ScholarPubMed
Daryani, A., Alaei, R., Arab, R., Sharif, M., Dehghan, M.H. & Ziaei, H. (2007) The prevalence, intensity and viability of hydatid cysts in slaughtered animals in the Ardabil province of Northwest Iran. Journal of Helminthology 81, 1317.CrossRefGoogle ScholarPubMed
Eslami, A. & Hosseini, S.H. (1998) Echinococcus granulosus infection of farm dogs of Iran. Parasitology Research 84, 205207.CrossRefGoogle ScholarPubMed
Gasser, R.B., Zhu, X. & McManus, D.P. (1999) NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). International Journal for Parasitology 29, 19651970.CrossRefGoogle ScholarPubMed
Hajialilo, E., Harandi, M.F., Sharbatkhori, M., Mirhendi, H. & Rostami, S. (2011) Genetic characterization of Echinococcus granulosus in camels, cattle and sheep from the south-east of Iran indicates the presence of the G3 genotype. Journal of Helminthology 86, 263270.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) A user-friendly biological sequence alignment editor and analysis for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Harandi, M.F., Hobbs, R.P., Adams, P.J., Mobedi, I., Morgan-Ryan, U.M. & Thompson, R.C. (2002) Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran. Parasitology 125, 367373.Google ScholarPubMed
Huttner, M., Nakao, M., Wassermann, T., Siefert, L., Boomker, J.D., Dinkel, A., Sako, Y., Mackenstedt, U., Romig, T. & Ito, A. (2008) Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion. International Journal for Parasitology 38, 861868.CrossRefGoogle ScholarPubMed
Karimi, A. & Dianatpour, R. (2008) Genotypic and phenotypic characterization of Echinococcus granulosus of Iran. Biotechnology 7, 757762.CrossRefGoogle Scholar
Kia, E.B., Rahimi, H., Sharbatkhori, M., Talebi, A., Fasihi Harandi, M. & Mirhendi, H. (2010) Genotype identification of human cystic echinococcosis in Isfahan, central Iran. Parasitology Research 107, 757760.CrossRefGoogle ScholarPubMed
Lavikainen, A., Lehtinen, M.J., Meri, T., Hirvela-Koski, V. & Meri, S. (2003) Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127, 207215.CrossRefGoogle Scholar
Lavikainen, A., Lehtinen, M.J., Laaksonen, S., Agren, E., Oksanen, A. & Meri, S. (2006) Molecular characterization of Echinococcus isolates of cervid origin from Finland and Sweden. Parasitology 133, 565570.CrossRefGoogle ScholarPubMed
Lavikainen, A., Haukisalmi, V., Lehtinen, M.J., Henttonen, H., Oksanen, A. & Meri, S. (2008) A phylogeny of members of the family Taeniidae based on the mitochondrial cox1 and nad1 gene data. Parasitology 135, 14571467.CrossRefGoogle ScholarPubMed
Maleky, F. & Moradkhan, M. (2000) Echinococcosis in the stray dogs of Tehran, Iran. Annals of Tropical Medicine and Parasitology 94, 329331.CrossRefGoogle ScholarPubMed
McManus, D.P. & Thompson, R.C. (2003) Molecular epidemiology of cystic echinococcosis. Parasitology 127, S37S51.CrossRefGoogle ScholarPubMed
Mobedi, I., Madadi, H. & Arfaa, F. (1970) Camel, Camelus dromedarius, as intermediate host of Echinococcus granulosus in Iran. Journal of Parasitology 56, 1255.CrossRefGoogle ScholarPubMed
Moro, P. & Schantz, P.M. (2009) Echinococcosis: a review. International Journal of Infectious Diseases 13, 125133.CrossRefGoogle ScholarPubMed
Nakao, M., McManus, D.P., Schantz, P.M., Craig, P.S. & Ito, A. (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134, 713722.CrossRefGoogle ScholarPubMed
Nakao, M., Yanagida, T., Okamoto, M., Knapp, J., Nkouawa, A., Sako, Y. & Ito, A. (2010) State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infection, Genetics and Evolution 10, 444452.CrossRefGoogle ScholarPubMed
Page, R.D. (1996) Tree View: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google Scholar
Parsa, F., Haghpanah, B., Pestechian, N. & Salehi, M. (2011) Molecular epidemiology of Echinococcus granulosus strains in domestic herbivores of Lorestan, Iran. Jundishapur Journal of Microbiology 4, 123130.Google Scholar
Pednekar, R.P., Gatne, M.L., Thompson, R.C. & Traub, R.J. (2009) Molecular and morphological characterisation of Echinococcus from food producing animals in India. Veterinary Parasitology 165, 5865.CrossRefGoogle ScholarPubMed
Pour, A.A., Hosseini, S.H. & Shayan, P. (2011) Comparative genotyping of Echinococcus granulosus infecting buffalo in Iran using cox1 gene. Parasitology Research 108, 12291234.CrossRefGoogle ScholarPubMed
Rokni, M.B. (2009) Echinococcosis/hydatidosis in Iran. Iranian Journal of Parasitology 4, 116.Google Scholar
Rostami Nejad, M., Nazemalhosseini Mojarad, E., Nochi, Z., Fasihi Harandi, M., Cheraghipour, K., Mowlavi, G.R. & Zali, M.R. (2008) Echinococcus granulosus strain differentiation in Iran based on sequence heterogeneity in the mitochondrial 12S rRNA gene. Journal of Helminthology 82, 343347.CrossRefGoogle ScholarPubMed
Scott, J.C., Stefaniak, J., Pawlowski, Z.S. & McManus, D.P. (1997) Molecular genetic analysis of human cystic hydatid cases from Poland: identification of a new genotypic group (G9) of Echinococcus granulosus. Parasitology 114, 3743.CrossRefGoogle ScholarPubMed
Sharbatkhori, M., Mirhendi, H., Jex, A.R., Pangasa, A., Campbell, B.E., Kia, E.B., Eshraghian, M.R., Harandi, M.F. & Gasser, R.B. (2009) Genetic categorization of Echinococcus granulosus from humans and herbivorous hosts in Iran using an integrated mutation scanning-phylogenetic approach. Electrophoresis 30, 26482655.CrossRefGoogle ScholarPubMed
Sharbatkhori, M., Mirhendi, H., Harandi, M.F., Rezaeian, M., Mohebali, M., Eshraghian, M., Rahimi, H. & Kia, E.B. (2010) Echinococcus granulosus genotypes in livestock of Iran indicating high frequency of G1 genotype in camels. Experimental Parasitology 124, 373379.CrossRefGoogle ScholarPubMed
Sharbatkhori, M., Fasihi Harandi, M., Mirhendi, H., Hajialilo, E. & Kia, E.B. (2011) Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitology Research 108, 521527.CrossRefGoogle Scholar
Thompson, R.C. (2008) The taxonomy, phylogeny and transmission of Echinococcus. Experimental Parasitology 119, 439446.CrossRefGoogle ScholarPubMed
Thompson, R.C. & McManus, D.P. (2002) Towards a taxonomic revision of the genus Echinococcus. Trends in Parasitology 18, 452457.CrossRefGoogle ScholarPubMed
Zhang, L., Eslami, A., Hossein, S.H. & McManus, D.P. (1998) Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA marker. American Journal of Tropical Medicine and Hygiene 59, 171174.CrossRefGoogle Scholar