Skip to main content Accessibility help

First report of Echinococcus granulosus sensu stricto (G1) in Nigeria, West Africa

  • J.A. Ohiolei (a1), H.-B. Yan (a1), L. Li (a1), C. Isaac (a2), B.-Q. Fu (a1) and W.-Z. Jia (a1)...


Echinococcus granulosus sensu stricto is regarded to have the highest zoonotic potential of all Echinococcus taxa. Globally, human infection due to this species constitutes over 88.44% of the total cystic echinococcosis (CE) burden. Here, we report a CE infection in a Nigerian camel caused by E. granulosus G1 genotype. To the best of our knowledge, this report is the first encounter of the G1 genotype in the West Africa sub-region where the G6 genotype is reportedly prevalent, suggesting that the epidemiology of this highly zoonotic group could have a wider host range and distribution in the sub-region, and emphasizes the need for further investigation into the genetic diversity of Echinococcus spp. in Nigeria and across the sub-region.


Corresponding author

Author for correspondence: W.-Z. Jia, E-mail:


Hide All
Addy, F, Alakonya, A, Wamae, N et al. (2012) Prevalence and diversity of cystic echinococcosis in livestock in Maasailand, Kenya. Parasitology Research 111, 22892294.
Alvarez Rojas, CA, Romig, T and Lightowlers, MW (2014) Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. International Journal for Parasitology 44, 918.
Angheben, A, Mariconti, M, Degani, M, Gobbo, M, Palvarini, L, Gobbi, F, Brunetti, E and Tamarozzi, F (2017) Is there echinococcosis in West Africa? A refugee from Niger with a liver cyst. Parasites & Vectors 10, 232.
Boufana, B, Lahmar, S, Rebai, W, Ben Safta, Z, Jebabli, L, Ammar, A, Kachti, M, Aouadi, S and Craig, PS (2014) Genetic variability and haplotypes of Echinococcus isolates from Tunisia. Transaction of the Royal Society of Tropical Medicine and Hygiene 108, 706714.
Deplazes, P, Rinaldi, L, Alvarez Rojas, CA et al. (2017) Global distribution of alveolar and cystic echinococcosis. Advances in Parasitology 95, 315493.
Ernest, E, Nonga, HE, Kassuku, AA and Kazwala, RR (2009) Hydatidosis of slaughtered animals in Ngorongoro district of Arusha Hydatidosis of slaughtered animals in Ngorongoro district of Arusha region, Tanzania. Tropical Animal Health and Production 41, 11791185.
Fasina, O and Ogun, OG (2017) Hydatid cyst of the orbit in a young Nigerian female: a case report. Ghana Medical Journal 51, 204206.
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposiums Series 41, 9598.
Kinkar, L, Laurimäe, T, Acosta-Jamett, G et al. (2018 a) Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: a practical guide. Infection, Genetics and Evolution 64, 178184.
Kinkar, L, Laurimäe, T, Acosta-Jamett, G et al. (2018 b) Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. International Journal for Parasitology 48, 729742.
Kinkar, L, Laurimäe, T, Balkaya, I et al. (2018 c) Genetic diversity and phylogeography of the elusive, but epidemiologically important Echinococcus granulosus sensu stricto genotype G3. Parasitology 145, 16131622.
Kinkar, L, Korhonen, PK, Cai, H et al. (2019) Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasites & Vectors 12, 238.
Laurimäe, T, Kinkar, L, Moks, E et al. (2018) Molecular phylogeny based on six nuclear genes suggests that Echinococcus granulosus sensu lato genotypes G6/G7 and G8/G10 can be regarded as two distinct species. Parasitology 145, 19291937.
Lymbery, AJ (2017) Phylogenetic pattern, evolutionary processes and species delimitation in the genus Echinococcus. Advances in Parasitology 95, 111145.
Lymbery, AJ, Jenkins, EJ, Schurer, JM and Thompson, RC (2015) Echinococcus canadensis, E. borealis, and E. intermedius. What's in a name? Trends in Parasitology 31, 2329.
Mauti, S, Traoré, A, Crump, L, Zinsstag, J and Grimm, F (2016) First report of Echinococcus granulosus (genotype G6) in a dog in Bamako, Mali. Veterinary Parasitology 217, 6163.
Nakao, M, Lavikainen, A and Hoberg, E (2015) Is Echinococcus intermedius a valid species? Trends in Parasitology 31, 342343.
Ohiolei, JA, Yan, HB, Li, L et al. (2019 a) Cystic echinococcosis in Nigeria: first insight into the genotypes of Echinococcus granulosus in animals. Parasites & Vectors 12, 392.
Ohiolei, JA, Yan, H-B, Li, L, Zhu, G-Q, Muku, RJ, Wu, Y-T and Jia, W-Z (2019 b) Review of cystic echinococcosis in Nigeria: a story of neglect. Acta Parasitologica 10.2478/s11686-019-00124-x
Omadang, L, Chamai, M, Othieno, E, Okwi, A, Inangolet, FO, Ejobi, F, Oba, P and Ocaido, M (2018) Knowledge, attitudes and practices towards cystic echinococcosis in livestock among selected pastoral and agro-pastoral communities in Uganda. Tropical Animal Health and Production 50, 1117.
Ozoilo, KN, Iya, D, Kidmas, AT, Uwumarogie, O and Hassan, S (2007) Anterior abdominal wall hydatid cyst; an unusual presentation. Nigerian Journal of Medicine 16, 181182.
Thompson, R (2008) The taxonomy, phylogeny and transmission of Echinococcus. Experimental Parasitology 119, 439446.
WHO (2013) Sustaining the drive to overcome the global impact of neglected tropical diseases: Second WHO report on neglected diseases. Geneva, World Health Organization.
Wu, Y, Li, L, Zhu, G et al. (2018) Mitochondrial genome data confirm that yaks can serve as the intermediate host of Echinococcus canadensis (G10) on the Tibetan Plateau. Parasites & Vectors 11, 166.


First report of Echinococcus granulosus sensu stricto (G1) in Nigeria, West Africa

  • J.A. Ohiolei (a1), H.-B. Yan (a1), L. Li (a1), C. Isaac (a2), B.-Q. Fu (a1) and W.-Z. Jia (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed