Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T03:09:45.359Z Has data issue: false hasContentIssue false

Characterization of Dicrocoelium dendriticum haplotypes from sheep and cattle in Iran based on the internal transcribed spacer 2 (ITS-2) and NADH dehydrogenase gene (nad1)

Published online by Cambridge University Press:  11 October 2013

S. Gorjipoor
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
M. Moazeni*
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
H. Sharifiyazdi
Affiliation:
Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
*
*Fax: +98 711 2286940 E-mail: moazeni@shirazu.ac.ir

Abstract

The present study assessed whether the genetic variation among different hosts (sheep and cattle) and geographical isolates (n= 28) of Dicrocoelium dendriticum from Iran is present based on mitochondrial (nad1) and ribosomal (ITS-2) DNA markers. Molecular analysis revealed the presence of at least ten and two distinct haplotypes in the NADH dehydrogenase gene (nad1) and internal transcribed spacer 2 (ITS-2), respectively. The nad1 and ITS-2 sequence data were deposited in GenBank under accession numbers, JX050110–134 and JQ966972–3. According to the results of our study, ND-D and ITS-A are established as being the predominant haplotypes of D. dendriticum in Iran. The Iranian isolates showed a higher intraspecific genetic diversity of 0–0.97% for nad1, compared to 0–0.42% for ITS-2. The alignment and comparison of nad1 and ITS-2 sequences revealed eight and one polymorphic sites, respectively. In the nad1 sequences, six were silent and two nucleotide substitutions were responsible for amino acid alterations. A phylogenetic analysis of the sequence data revealed that host associations and geographic location are not likely useful markers for D. dendriticum haplotype classification. Consequently, sequencing results obtained from the nad1 gene as a mitochondrial marker for the first time in this study would provide a valuable tool to analyse further molecular details of D. dendriticum worldwide.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, N.A. & Meshkehkar, M. (2010) Prevalence and long term trend of liver fluke infections in sheep, goat and cattle slaughtered in Khuzestan, southwestern Iran. Journal of Paramedical Sciences 1, 2631.Google Scholar
Ansari-Lari, M. & Moazeni, M. (2006) A retrospective survey of liver fluke disease in livestock based on abattoir data in Shiraz, South of Iran. Preventive Veterinary Medicine 73, 9396.Google Scholar
Arbabi, M., Dalimi-Asl, A.I., Ghaffarifar, F. & Foorozandeh-Moghadam, M. (2012) Morphological and molecular characterization of Dicrocoelium isolated from sheep in the north and center of Iran. Feyz 16, 135145.Google Scholar
Bazsalovicsova, E., Kralova-Hromadova, I., Spakulova, M., Reblanova, M. & Oberhauserovk, K. (2010) Determination of ribosomal internal transcribed spacer 2 (ITS-2) inter specific markers in Fasciola hepatica, Dicrocoelium dendriticum and Paramphistomum cervi (Trematoda), parasites of wild and domestic ruminants. Helminthologia 47, 7682.CrossRefGoogle Scholar
Bowles, J. & McManus, D.P. (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972.Google Scholar
Bowles, J., Hope, M., Tiu, W.U., Liu, X. & McManus, D.P. (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Tropica 55, 217229.Google Scholar
Campo, R., Manga-Gonzalez, M.Y., Gonzalez-Lanza, C., Rollinson, D. & Sandoval, H. (1998) Characterization of adult Dicrocoelium dendriticum by isoelectric focusing. Journal of Helminthology 72, 109116.Google Scholar
Campo, R., Manga-Gonzalez, M.Y. & Gonzalez-Lanza, C. (2000) Relationship between egg output and parasitic burden in lambs experimentally infected with different doses of Dicrocoelium dendriticum (Digenea). Veterinary Parasitology 87, 139149.Google Scholar
Chartier, C. & Reche, B. (1992) Gastrointestinal helminths and lungworms of French dairy goats: prevalence and geographical distribution in Poitou-Charentes. Veterinary Research Communications 16, 327335.Google Scholar
Daryani, A., Alaei, R., Arab, R., Sharif, M., Dehghan, M.H. & Ziaei, H. (2006) Prevalence of liver fluke infections in slaughtered animals in Ardabil province, Northwestern Iran. Journal of Animal and Veterinary Advances 5, 408411.Google Scholar
Farid, H. (1971) Human infection with Fasciola hepatica and Dicrocoelium dendriticum in Isfahan area, central Iran. Journal of Parasitology 57, 160.Google Scholar
Jithendran, K.P. & Bhat, T.K. (1996) Prevalence of dicrocoeliasis in sheep and goats in Himachal Pradesh, India. Veterinary Parasitology 61, 265271.Google Scholar
Herwerden, L.V., Blair, D. & Agatsuma, T. (2000) Multiple lineages of the mitochondrial gene NADH dehydrogenase subunit 1 (nad1) in parasitic helminths: implications for molecular evolutionary studies of facultatively anaerobic eukaryotes. Journal of Molecular Evolution 51, 339352.Google Scholar
Hillis, D.M. & Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 411453.Google Scholar
Hinaidy, H.K. (1983) Dicrocoelium suppereri nomen novum (syn. D. orientalis Sudarikov and Ryjikov 1951), a new trematode for the parasite fauna of Austria. Zentralblatt für Veterinärmedizin B 30, 576589.Google Scholar
Leon-Ortega, P., Hermoso, R. & Monteoliva, M. (1986) Isoenzymes of lactate dehydrogenase (EC 1.1.1.27) in Dicrocoelium dendriticum and Fasciola hepatica (Trematoda). Comparative Biochemistry and Physiology 83, 159161.Google Scholar
Leon-Ortega, P., Monteoliva, M. & Sanchez-Moreno, M. (1988) Fasciola hepatica and Dicrocoelium dendriticum isoenzyme patterns of malate dehydrogenase and malic enzymes. Angewandte Parasitologie 29, 173177.Google Scholar
Leon-Ortega, P., Monteoliva, M. & Sanchez-Moreno, M. (1989) Isoenzyme patterns of phosphatases and esterases in Fasciola hepatica and Dicrocoelium dendriticum. Veterinary Parasitology 30, 297304.Google Scholar
Malek, A.E. (1980) Occurrence of Dicrocoelium hospes in Mali and Senegal, West Africa. Journal of Helminthology 54, 4546.Google Scholar
Martinez-Ibeas, A.M., Martinez-Valladares, M., Gonzalez-Lanza, C., Minambres, B. & Manga-Gonzalez, M.Y. (2011) Detection of Dicrocoelium dendriticum larval stages in mollusc and ant intermediate hosts by PCR, using mitochondrial and ribosomal internal transcribed spacer (ITS-2) sequences. Parasitology 24, 18.Google Scholar
Maurelli, M.P., Rinaldi, L., Capuano, F., Perugini, A.G., Veneziano, V. & Cringoli, G. (2007) Characterization of the 28S and the second internal transcribed spacer of ribosomal DNA of Dicrocoelium dendriticum and Dicrocoelium hospes. Parasitology Research 101, 12511255.Google Scholar
McManus, D.P. & Thompson, R.C. (2003) Molecular epidemiology of cystic echinococcosis. Parasitology 127, S37S51.Google Scholar
Moazeni, M., Sharifiyazdi, H. & Izadpanah, A. (2011) Characterization of Fasciola hepatica genotypes from cattle and sheep in Iran using cytochrome c oxidase gene (CO1). Parasitology Research 110, 23792384.Google Scholar
Morozova, E.V., Ryskov, A.P. & Semenova, S.K. (2002) RAPD variation in two trematode species (Fasciola hepatica and Dicrocoelium dendriticum) from a single cattle population. Genetica 38, 11551162.Google ScholarPubMed
Movassaghi-Ghazvini, M.H., Valilou, M.R., Ahmadzadeh, A.R., Karimi, A.R. & Zirak, K. (2008) The prevalence of sheep liver trematodes in the Northwest Region of Iran. Turkish Journal of Veterinary and Animal Sciences 32, 305307.Google Scholar
Otranto, D. & Traversa, D. (2002) A review of dicrocoeliasis of ruminants including recent advances in the diagnosis and treatment. Veterinary Parasitology 107, 317335.CrossRefGoogle ScholarPubMed
Otranto, D. & Traversa, D. (2003) Dicrocoeliasis of ruminants: a little known fluke disease. Trends in Parasitology 19, 1215.CrossRefGoogle ScholarPubMed
Otranto, D., Rebien, S., Weigl, S., Cantacessi, C., Parisi, A., Paolo Lia, R., Meter, D. & Olson, P.D. (2007) Morphological and molecular differentiation between Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) Tang and Tang, 1978 (Platyhelminthes: Digenea). Acta Tropica 104, 9198.Google Scholar
Rojo-Vazquez, F.A., Meanab, A., Valcarcelc, F. & Martinez-Valladares, M. (2012) Update on trematode infections in sheep. Veterinary Parasitology 189, 1538.CrossRefGoogle ScholarPubMed
Rollinson, D., Walker, T.K. & Simpson, J.G. (1986) The application of recombinant DNA technology to problems of helminth identification. Parasitology 91, S53S71.Google Scholar
Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Chilton, N.B., Petney, T.N., Barton, M. & Andrews, R.H. (2008) Mitochondrial DNA sequence variation among geographical isolates of Opisthorchis viverrini in Thailand and Lao PDR, and phylogenetic relationships with other trematodes. Parasitology 135, 14791486.Google Scholar
Saki, J., Khademvatan, S.H. & Yousefi, E. (2011) Molecular identification of animal Fasciola isolates in Southwest of Iran. Australian Journal of Basic and Applied Sciences 5, 18781883.Google Scholar
Sandoval, H., Manga-Gonzalez, M.Y., Campo, R., Garcia, P., Castro, J.M. & Perez de la Vega, M. (1999) Preliminary study on genetic variability of Dicrocoelium dendriticum determined by random amplified polymorphic DNA. Parasitology International 48, 2126.Google Scholar
Sharifiyazdi, H., Moghaddar, N., Gorjipoor, S. & Modarres-musavi, M. (2011) Genetic characterization of Nematodirella cameli through internal transcribed spacer rDNA. Journal of Veterinary Research 15, 500510.Google Scholar
Taira, K., Shirasaka, S., Taira, N., Ando, Y. & Adachi, Y. (2006) Morphometry on lancet flukes found in Japanese sika deer (Cervus nippon centralis) captured in Iwate Prefecture, Japan. The Journal of Veterinary Medical Science 68, 375377.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Thaenkham, U., Nuamtanong, S., Sanguankiat, S., Yoonuan, T., Touch, S., Manivong, K., Vonghachack, Y., Sato, M. & Waikagul, J. (2010) Monophyly of Opisthorchis viverrini populations in the lower Mekong Basin, using mitochondrial DNA nad1 gene as the marker. Parasitology International 59, 242247.Google Scholar
Tkach, V.V., Pawlowski, J. & Sharpilo, V.P. (2000) Molecular and morphological differentiation between species of the Plagiorchis vespertilionis group (Digenea, Plagiorchiidae) occurring in European bats, with a redescription of P. vespertilionis (Muller, 1780). Systematic Parasitology 47, 922.Google Scholar
Vara-Del Rio, M.P., Villa, H., Martinez-Valladares, M. & Rojo-Vazquez, F.A. (2007) Genetic heterogeneity of Fasciola hepatica isolates in the Northwest of Spain. Parasitology Research 101, 10031006.Google Scholar
Wolff, K., Hauser, B. & Wild, P. (1984) Dicrocoeliasis in sheep: investigation on pathogenesis and liver regeneration after therapy. Berliner und Münchener Tierarztliche Wochenschrift 97, 378387(in German).Google Scholar
Zali, M.R., Jafa-Rimehr, A., Rezaian, M., Meamar, A.R., Vaziri, S. & Mohraz, M. (2004) Prevalence of intestinal parasitic pathogens among HIV–positive individuals in Iran. Japanese Journal of Infectious Diseases 57, 268270.Google ScholarPubMed