Skip to main content Accessibility help
×
Home

Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica

  • Robert Bindschadler (a1), David G. Vaughan (a2) and Patricia Vornberger (a3)

Abstract

Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean’s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt a−1. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150 m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica
      Available formats
      ×

Copyright

References

Hide All
Bindschadler, R.A. 2002. History of lower Pine Island Glacier, West Antarctica, from Landsat imagery. J. Glaciol., 48(163), 536544.
Corr, H.F.J., Doake, C.S.M., Jenkins, A. and Vaughan, D.G.. 2001. Investigations of an ‘ice plain’ in the mouth of Pine Island Glacier, Antarctica. J. Glaciol., 47(156), 5157.
Fahnestock, M.A., Scambos, T.A., Bindschadler, R.A. and Kvaran, G.. 2000. A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica. J. Glaciol., 46(155), 652664.
Jacobel, R.W. and Bindschadler, R.. 1993. Radar studies at the mouths of Ice Streams D and E, Antarctica. Ann. Glaciol., 17, 262268.
Jacobs, S.S., Hellmer, H.H., Doake, C.S.M., Jenkins, A. and Frolich, R.M.. 1992. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38(130), 375387.
Jacobs, S.S., Hellmer, H.H. and Jenkins, A.. 1996. Antarctic ice sheet melting in the southeast Pacific. Geophys. Res. Lett., 23(9), 957960.
Jenkins, A. and 6 others. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci., 3(7), 468472.
Joughin, I., Rignot, E., Rosanova, C.E., Lucchitta, B.K. and Bohlander, J.. 2003. Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys. Res. Lett., 30(13), 1706. (10.1029/2003GL017609.)
Joughin, I., Smith, B.E. and Holland, D.M.. 2010. Sensitivity of 21 st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett., 37(20), L20502. (10.1029/2010GL044819.)
Payne, A.J., Vieli, A., Shepherd, A., Wingham, D.J. and Rignot, E.. 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31(23), L23401. (10.1029/2004GL021284.)
Payne, A.J., Holland, P.R., Shepherd, A.P., Rutt, I.C., Jenkins, A. and Joughin, I.. 2007. Numerical modeling of ocean–ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res., 112(C10), C10019. (10.1029/2006JC003733.)
Rignot, E.J. 1998. Fast recession of a West Antarctic glacier. Science, 281(5376), 549551.
Rignot, E. 2008. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys. Res. Lett., 35(12), L12505. (10.1029/2008GL033365.)
Rignot, E. and Jacobs, S.S.. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296(5575), 20202023.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. and Thomas, R.. 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401. (10.1029/2004GL020697.)
Scambos, T.A., Bohlander, J.A., Shuman, C.A. and Skvarca, P.. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402. (10.1029/2004GL020670.)
Scott, J.B.T., Gudmundsson, G.H., Smith, A.M., Bingham, R.G., Pritchard, H.D. and Vaughan, D.G.. 2009. Increased rate of acceleration on Pine Island Glacier is strongly coupled to thinning induced changes in driving stress. Cryosphere, 3(1), 125131.
Shepherd, A., Wingham, D. and Mansley, J.A.. 2002. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett., 29(10), 1364. (10.1029/2001GL014183.)
Thoma, M., Jenkins, A., Holland, D. and Jacobs, S.. 2008. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35(18), L18602. (0.1029/2008GL034939.)
Thomas, R. and 17 others. 2004. Accelerated sea-level rise from West Antarctica. Science, 306(5694), 255258.
Van den Broeke, M., van de Berg, W.J. and van Meijgaard, E.. 2008. Firn depth correction along the Antarctic grounding line. Antarct. Sci., 20(5), 513517.
Vaughan, D.G. and 9 others. 2006. New boundary conditions for the West Antarctic ice sheet: subglacial topography beneath Pine Island Glacier. Geophys. Res. Lett., 33(9), L09501. (10.1029/2005GL025588.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed