Skip to main content Accessibility help
×
×
Home

Triaxial tests on snow at low strain rate. Part II. Constitutive behaviour

  • Carlo Scapozza (a1) (a2) and Perry Bartelt (a1)

Abstract

Fine-grained, dry snow with a density range of 190–435 kg m−3 was tested in triaxial compression at −12°C with confining pressures varying between 0 and 40 kPa. The tests were strain-rate controlled, with strain rates ranging between 7.4 × 10−7 s−1 and 6.6 × 10−5 s−1. The analysis of the test results revealed that the relationship between yield stress and viscous strain rate is best given by a power law, similar to polycrystalline ice. However, the power-law exponent n is a function of density and varies between 1.8 (low-density snow, ρ < 200 kg m−3) and 3.6 (high-density snow, ρ > 320 kg m−3). The tests also showed that lower-density snow displays a significant non-linear stress–strain response before yielding. Two further aspects of the constitutive behaviour of snow were identified: (1) the strainrate independence of the post-yield work-hardening behaviour in compression and (2) the independence of the axial yield stress in relation to the confining pressure. The experimental observations are discussed with respect to the mechanical properties of polycrystalline ice, which is the constituent material of the load-bearing ice skeleton.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Triaxial tests on snow at low strain rate. Part II. Constitutive behaviour
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Triaxial tests on snow at low strain rate. Part II. Constitutive behaviour
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Triaxial tests on snow at low strain rate. Part II. Constitutive behaviour
      Available formats
      ×

Copyright

References

Hide All
Bader, H. P., Gubler, H. and Salm, B.. 1989. Distributions of stresses and strainrates in snowpacks. In Swobada, C., ed. Numerical methods in geomechanics. Rotterdam, A. A. Balkema, 22572263.
Barnes, P., Tabor, D. and Walker, J. C. F.. 1971. The friction and creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 324(1557), 127155.
Bartelt, P. and Christen, M.. 1999. A computational procedure for instationary temperature-dependent snow creep. In Hutter, K., Wang, Y. and Beer, H., eds. Advances in cold-region thermal engineering and sciences: technological, environmental, and climatological impact. Berlin, etc., Springer-Verlag, 367386. (Lecture Notes in Physics 533.)
Bartelt, P. and von Moos, M.. 2000.Triaxial tests to determine a microstructure-based snow viscosity law. Ann. Glaciol., 31, 457462.
Bozhinskiy, A. N. and Losev, K. S.. 1998. The fundamentals of avalanche science. Eidg. Inst. Schnee- und Lawinenforsch. Mitt. 55. (Translated from Russian by C. E. Bartelt.)
Brown, R. L. 1980. A volumetric constitutive law for snow based on a neck growth model. J. Appl. Phys., 51(1), 161165.
Colbeck, S. C. and Evans, R. J.. 1973. A flow law for temperate glacier ice. J. Glaciol., 12(64), 7186.
Cole, D. M. 1987. Strain-rate and grain-size effects in ice. J. Glaciol., 33(115), 274280.
Cole, D. M. 2001. The microstructure of ice and its influence on mechanical properties. Eng. Frac. Mech., 68(17–18), 17971822.
Desrues, J., Darve, F., Flavigny, E., Navarre, J. P. and Taillefer, A.. 1980. An incremental formulation of constitutive equations for deposited snow. J. Glaciol., 25(92), 289307.
Goldsby, D. L. and Kohlstedt, D. L.. 1997. Grain boundary sliding in fine-grained ice I. Scripta Mater., 37(9), 13991406.
Gubler, H. 1978. Determination of the mean number of bonds per snow grain and of the dependence of the tensile strength of snow on stereological parameters. J. Glaciol., 20(83), 329341.
Gubler, H. 1994. Physik von Schnee. Davos, Eidgenössisches Institut für Schnee- und Lawinenforschung. (Internal Report.)
Hansen, A. C. and Brown, R. L.. 1988. An internal state variable approach to constitutive theories for granular materials with snow as an example. Mech. Mater., 7(2), 109119.
Jones, S. J. 1982.The confined compressive strength of polycrystalline ice. J. Glaciol., 28(98), 171177.
Kojima, K. 1975. A field experiment on the rate of densification of natural snow layers under low stresses. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974 — Snow Mechanics), 298308.
Lang, R. M. and Harrison, W. L.. 1995.Triaxial tests on dry, naturally occurring snow. Cold Reg. Sci.Technol., 23(2), 191199.
Langdon, T. G. 1973. Creep mechanisms in ice. In Whalley, E., Jones, S. J. and Gold, L.W., eds. Physics and chemistry of ice. Ottawa, Ont., Royal Society of Canada, 357361.
Mahajan, P. and Brown, R. L.. 1993. A microstructure-based constitutive law for snow. Ann. Glaciol., 18, 287294.
Mellor, M. 1975. A review of basic snow mechanics. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974 — Snow Mechanics), 251291.
Meshke, G., Liu, C. and Mang, A.. 1996. Large strain finite element analysis of snow. ASCE J. Eng. Mech., 122(7), 591602.
Navarre, J. P., Taillefer, A., Flavigny, E., Desrues, J. and Gauthier, T.. 1987. Mécanique de la neige. Essais en laboratoire sur la résistance de la neige. International Association of Hydrological Sciences Publication 162 (Symposium at Davos 1986 — Avalanche Formation, Movement and Effects), 129137.
Lawrence, St. W. and Bradley, C. C.. 1975. Deformation of snow in terms of a structural mechanism. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974 — Snow Mechanics), 155170.
Salm, B. 1975. Constitutive equation for creeping snow. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974 — Snow Mechanics), 222235.
Sinha, N. K. 1979. Grain boundary sliding in polycrystalline material. Philos. Mag. A, 40(5), 825842.
SLF, Eidgenössisches Institut für Schnee- und Lawinenforschung. 2000. Der Lawinenwinter 1999. Ereignisanalyse. Davos, Eidgenössisches Institut für Schnee- und Lawinenforschung.
Szyszkowski, W. and Glockner, P. G.. 1986. On a multiaxial constitutive law for ice. Mech. Mater., 5(1), 4971.
Von Moos, M. 2000. Zusammenstellung der Versuchresultate der Experimente mit dem schneemechanischen Triaxialapparat in den Wintern 1997/98 and 1998/99. Zürich. Zürich, Swiss Federal Institute of Technology. Institute of Geotechnical Engineering. (Internal Report 442/4.)
Von Moos, M., Bartelt, P., Zweidler, A. and Bleiker, E.. 2003.Triaxial tests on snow at low strain rate: Part I. Experimental device. J. Glaciol., 49(164), 8190.
Voytkovskiy, K. F. 1977. Mekhanicheskiye svoystva snega [Mechanical properties of snow]. Moscow, Nauka. Sibirskoye Otdeleniye. Institut Merzlotovedeniya. (Transl. by C. E. Bartelt.)
Weertman, J. 1973. Creep of ice. In Whalley, E., Jones, S. J. and Gold, L., eds. Physics and chemistry of ice. Ottawa, Ont., Royal Society of Canada, 320337.
Ziegler, H. 1963. Methoden der Platizitätstheorie in der Schneemechanik. Z. Angew. Math. Phys. (ZAMP), 14, 713737.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed