Skip to main content Accessibility help
×
Home

A topographic origin for double-ridge features in visible imagery of ice divides in Antarctica

  • A. H. Goodwin (a1) and D. G. Vaughan (a2)

Abstract

The appearance of double-ridge features on visible imagery of the ice divides of Antarctic ice rises has often been noted but, largely due to a lack of adequate ground truth, their origins have remained enigmatic. We present several examples of ice rises and other isolated ice-flow centres that apparently show double ridges. We investigate one of these in particular: Fletcher Promontory, Antarctica. A digtal-elevation model (DEM) of the summit region is derived from surface profiles obtained using the Global Positioning System (GPS) and this is correlated with Landsat MSS satellite imagery. Precise registration is achieved by correlating image-brightness values with surface slope calculated along the direction of the Sun azimuth in the image. Using a simple bi-directional relation, the DEM data are used to model the Landsat image. We therefore demonstrate that the double ridge is a product of a subtle concavity parallel to the ridge and is unlikely to be dependent on other factors. This concavity is not predicted by steady-state models of ice divides and so we suggest that the ridge may not be in a steady-state but responding to changes in the glaciological boundary conditions. We speculate that this may be an indication of ongoing migration of the ice divide.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A topographic origin for double-ridge features in visible imagery of ice divides in Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A topographic origin for double-ridge features in visible imagery of ice divides in Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A topographic origin for double-ridge features in visible imagery of ice divides in Antarctica
      Available formats
      ×

Copyright

References

Hide All
Casassa, G. 1990. Photoclinometry of ice Stream C, Antarctica. Report for 1990 Graduate Summer Program, Universities Space Research space Research Association. Greenbelt, MD, NASA/Goddard Space Flight Center.
Choudhury, B.J. and Chang, A.T.C. 1981. On the angular variation of solar reflectance of snow. J. Geophys. Res., 86 (C1). 465472.
Cooper, A. P. R. 1994. A simple shape-from-shading applied to images of ice covered terrain. IEEE Trans, Geosci. Remote Sensing, 32 (6). 11961198.
Dowdeswell, J.A. and McIntyre, N.F. 1987. The surface topography of large ice masses from Landsat imagery. J. Glacial., 33 (113), 1623.
Eliason, P. T., Soderblom, L.A. and Chavez, P.S. 1981, Extraction of topographic and spectral albedo information from images. Photogramm. Eng. Remote Sensing 48 (11), 15711579.
Frolich, R. M., Vaughan, D. G. and Doake, C.S.M. 1989. Flow of Ruthford Ice Stream and comparison with Carlson Inlet, Antarctica. Ann. Glacial. 12. 5156.
Goodwin, A. H. 1993. Albedo variations over Antarctic ice rises. (M.Sc. thesis, Unversity of Aberdeen.)
Hall, D, K. and Martinee, J. 1985. Remote sensing ice and snow. London, etc., Chapman and HALL
Lucchitta, B. k., Bowell, J.-A. Edwards, K. L. Eliason, E. M. and Ferguson, H. M. 1987. Multispectral Landsat images of Antarctica U.S. Geol. Surv.. Bull 1696.
Martin, P. J. 1976. Antarctic ice rises. J. Glaciol., 17 (75). 141144.
Martin, P.J. and Sanderson, T.J.O. 1980. Morphology and dynamics of ice rises. J. Glaciol., 25 (91), 3315.
Pentland, A. P. 1990. Linear shape from shading. Int. Comput, J. Vision, 4, 153162.
U.S. Geological Survey. 1979. Landsat data user handbook. Revised edition. Washington, DC, U.S. Geological Survey.
Vaughan, D. G. 1994. Investigating tidal flexure on an ice shelf using kinematic GPS. Ann. Glaciol. 20, 372376.
Vaughan, D, G., and Doake, C.S.M. 1992. The use of satellite imagery over ice sheets, In Mather, P., ed. TERRA-I. Understanding the terrestrial, London, Taylor and Francis, 920.
Vaughan, D. G., Doake, C.S.M., and Mantripp, D, R. 1988. Topography of an Antarctic ice stream In SPOT-t image utilization, assesment result Toulouse, CNES Cepadues-Edhions, 167174.
Warren, S. G. 1982. Optical properties of snow. Rev. Geophys. Space Phys., 20 (1), 6789.
Weertman, J. 1973. Position of ice divides on ice centers on ice sheets. J. Glaciol, 12 (66), 353360.

A topographic origin for double-ridge features in visible imagery of ice divides in Antarctica

  • A. H. Goodwin (a1) and D. G. Vaughan (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed