Skip to main content Accessibility help
×
Home

Time-lapse imaging of subglacial drainage conditions using three-dimensional inversion of borehole electrical resistivity data

  • Bernd Kulessa (a1), Bryn Hubbard (a2) and Giles H. Brown (a3)

Abstract

We recorded electrical resistivity data at the base of four boreholes drilled through Haut Glacier d’Arolla, Switzerland. The data were acquired repetitively every hour over two diurnal hydrological cycles in the late melt season, separated by 10 days. Constrained three-dimensional (3-D) data inversion allowed reconstruction of hourly variations in bulk resistivity in the subglacial sediment layer. Inverted resistivity models reflect the establishment of channelized subglacial drainage in the study area between the two hydrological cycles, in agreement with previous work. Daily variations in bulk and water resistivity are in phase, and bulk resistivity amplitudes decrease away from the subglacial channel. Using selected electrical–hydraulic relationships, we estimate metre-scale changes in the hydraulic conductivity and porosity of the subglacial sediment layer, accounting for increasing clay content and decreasing median grain radius with distance from the channel. Hydraulic conductivity and porosity were respectively calculated to decrease from (6.4 ± 2.1) × 10–2ms–1 and 0.34 ± 0.01 at the channel to (3.3 ± 2.2) × 10–2ms–1 and 0.26 ± 0.01 at a distance of 5m from it. The hydraulic conductivity estimates are in agreement with previously inferred values, and the porosity estimates fall within the expected range for unlithified subglacial sediments. We conclude that collection and inversion of repeat 3-D subglacial resistivity data is feasible and has the capacity to generate multidimensional images of subglacial hydraulic processes and properties.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Time-lapse imaging of subglacial drainage conditions using three-dimensional inversion of borehole electrical resistivity data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Time-lapse imaging of subglacial drainage conditions using three-dimensional inversion of borehole electrical resistivity data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Time-lapse imaging of subglacial drainage conditions using three-dimensional inversion of borehole electrical resistivity data
      Available formats
      ×

Copyright

References

Hide All
Archie, G.E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME, 146, 5464.
Aristodemou, E. and Thomas-Betts., A. 2000. DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J. Appl. Geophys., 44(2), 275302.
Biella, G., Lozej, A. and Tabacco, I.. 1983. Experimental study of some hydrogeophysical properties of unconsolidated porous media. Ground Water, 21(6), 741751.
Binley, A., Ramirez, A. and Daily, W.. 1995. Regularised image reconstruction of noisy electrical resistance tomography data. In Beck, M.S., Hoyle, B.S., Morris, M.A. and Waterfall, R.C. eds. Proceedings of the Fourth Workshop of the European Concerted Action on Process Tomography, April 6–8 1995, Bergen, Norway. Manchester, University of Manchester Institute of Science and Technology, 401–410.
Blake, E.W. 1992. The deforming bed beneath a surge-type glacier: measurement of mechanical and electrical properties. (PhD thesis, University of British Columbia.)
Blake, E.W. and Clarke, G.K.C.. 1999. Subglacial electrical phenomena. J. Geophys. Res., 104(B4), 74817495.
Brand, G., Pohjola, V. and Hooke., R.LeB. 1987. Evidence for a till layer beneath Storglaciären, Sweden, based on electrical resistivity measurements. J. Glaciol., 33(115), 311314.
Clarke, G.K.C. 1987. Subglacial till: a physical framework for its properties and processes. J. Geophys. Res., 92(B9), 90239036.
Copland, L., Harbor, J., Minner, M. and Sharp, M.. 1997. The use of borehole inclinometry in determining basal sliding and internal deformation at Haut Glacier d’Arolla, Switzerland. Ann. Glaciol., 24, 331337.
Fischer, U.H. and Clarke, G.K.C.. 2001. Review of subglacial hydromechanical coupling: Trapridge Glacier, Yukon Territory, Canada. Quat. Int., 86, 2943.
Fountain, A.G. and Walder, J.S.. 1998. Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328.
Freeze, R.A. and Cherry, J.A.. 1979. Groundwater. Englewood Cliffs, NJ, Prentice Hall.
Gordon, S., Sharp, M., Hubbard, B., Smart, C., Ketterling, B. and Willis, I.. 1998. Seasonal reorganization of subglacial drainage inferred from measurements in boreholes. Hydrol. Process., 12(1), 105133.
Haeberli, W. and Fisch, W.. 1984. Electrical resistivity soundings of glacier beds: a test study on Grubengletscher, Wallis, Swiss Alps. J.Glaciol., 30(106), 373376.
Harbor, J., Sharp, M., Copland, L., Hubbard, B., Nienow, P. and Mair, D.. 1997. The influence of subglacial drainage conditions on the velocity distribution within a glacier cross section. Geology [Boulder], 25(8), 739742.
Hubbard, B. and Nienow, P.. 1997. Alpine subglacial hydrology. Quat. Sci. Rev., 16(9), 939955.
Hubbard, B.P., Sharp, M.J., Willis, I.C., M.K. Nielsen, and Smart, C.C.. 1995. Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland. J. Glaciol., 41(139), 572583.
Hubbard, B., Binley, A., Slater, L., Middleton, R. and Kulessa, B.. 1998. Inter-borehole electrical resistivity imaging of englacial drainage. J. Glaciol., 44(147), 429434.
Iken, A., Fabri, K. and Funk, M.. 1996. Water storage and subglacial drainage conditions inferred from borehole measurements on Gornergletscher, Valais, Switzerland. J. Glaciol., 42(141), 233248.
Kulessa, B. 2000. Geophysical borehole investigations of subglacial drainage conditions at Haut Glacier d’Arolla, Switzerland. (PhD thesis, University of Wales, Aberystwyth.)
Kulessa, B., Hubbard, B. and Brown, G.H.. 2003a. Cross-coupled flow modeling of coincident streaming and electrochemical potentials and application to subglacial self-potential data. J. Geophys. Res., 108(B8), 2381. (10.1029/2001JB001167.)
Kulessa, B., Hubbard, B., Brown, G.H. and Becker, J.. 2003b. Earth tide forcing of glacier drainage. Geophys. Res. Lett., 30(1), 1011. (10.1029/2002GL015303.)
Kulessa, B., Hubbard, B.P. and Brown, G.H.. 2005. Hydrogeological analysis of slug tests in glacier boreholes. J. Glaciol., 51(173), 269280.
Li, Y. and Oldenburg, D.W.. 2000. 3-D inversion of induced polarization data. Geophysics, 65(6), 19311945.
Marion, D., Nur, A., Yin, H. and Han, D.. 1992. Compressional velocity and porosity in sand–clay mixtures. Geophysics, 57(4), 554563.
Mitchell, A., Brown, G.H. and Fuge, R.. 2001. Minor and trace element export from glacierized Alpine headwater catchment (Haut Glacier d’Arolla, Switzerland). Hydrol. Process., 15(18), 34993524.
Murray, T. 1997. Assessing the paradigm shift: deformable glacier beds. Quat. Sci. Rev., 16(9), 9951016.
Revil, A. and Cathles, L.M.. 1999. Permeability of shaly sands. Water Resour. Res., 35(3), 651662.
Seagren, A.G. 1999. The nature of solute acquisition and suspended sediment dynamics in channelised subglacial weathering environments, Haut Glacier d’Arolla, Valais, Switzerland. (PhD thesis, University of Wales, Aberystwyth.)
Sharma, P.V. 1997. Environmental and engineering geophysics. Cambridge, Cambridge University Press.
Sharp, M.J. and 6 others. 1993. Geometry, bed topography and drainage system structure of the Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landforms, 18(6), 557571.
Smart, C.C. 1996. Statistical evaluation of glacier boreholes as indicators of basal drainage systems. Hydrol. Process., 10, 599613.
Stone, D.B., Clarke, G.K.C. and Blake, E.W.. 1993. Subglacial measurement of turbidity and electrical conductivity. J. Glaciol., 39(132), 415420.
Telford, W.M., Geldart, L.P. and Sheriff, R.E.. 1990. Applied geophysics. Second edition. Cambridge, etc., Cambridge University Press.
Worthington, P.L. 1993. The uses and abuses of the Archie equations, 1: The formation factor–porosity relationship. J. Appl. Geophys., 30(3), 215228.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed