Skip to main content Accessibility help
×
Home

Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry

  • Eric Rignot (a1)

Abstract

Over a floating glacier ice tongue or an ice shelf, the glacier motion measured by a single, repeat-pass, radar interferogram is difficult to analyze, because the long-term, steady motion of the ice is intermixed with its cyclic, downward motion induced by tidal forcing. Multiple interferograms and a quadruple-difference technique are necessary to separate the tidal signal from the long-term, steady motion of the ice. An example of application of this technique is given here using ERS-1 radar images of Petermann Gletscher, a major outlet glacier of northern Greenland. Tidal displacements are measured with < 5 mm statistical noise. The long-term ice Velocity is measured with a precision of 1 ma−1. The inferred tidal displacements agree well with model predictions from a fixed elastic beam with an elastic damping factor of 0.47 ± 0.01 km3. The hinge line is mapped with a precision of 20-80 m.

Combining the interferometric ice velocities with ice thickness data, the glacier ice discharge is calculated at and below the hinge line. At the hinge line, the ice flux is 12.1 ± 1 km3 a−1. At the ice front, calf-ice production is only 0.59 km3 −1 a−1, meaning that 95% of the ice that crosses the grounding line melts before it reaches the calving front. Assuming steady-state conditions, the melt rate of the glacier tongue averages 12 ± 1 m a−1, with peak values exceeding 20 ma−1 near the hinge line. This high melt rate cannot be accommodated by surface ablation alone (only about 23 ma−1) and is attributed to pronounced basal melting of the ice tongue. Basal melting, often assumed to be negligible in Greenland, is the dominant process of mass release from the floating section of Petermann Gletscher.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry
      Available formats
      ×

Copyright

References

Hide All
Chuah,, T.S., Gogineni,, S. P., Allen, C. and Wohletz, B. 1996. Radar thickness measurments pver the northern part of the Greenland ice sheet. Lawrence, KS. University of Kansas. Radar Systems and Remote Sensing Laboratory. (Technical Report 10470-3.)
Drewry,, D.J. and Robin., G. de Q. 1983. Form and flow of the Antarctic ice sheet during the last million years. In Robin., G. de Q., ed. The climatic rrcord in polar ice sheets. Cambridge, etc. Cambridge University Press, 28-38.
Dunbar,, M. 1978. Correspondence, Petermann Gletscher: possible source of a tabular iceberg off a coast of Newfoundland, J. Glaciol., 20 (84), 595-597.
Gabriel,, A.K., Goldstein,, R. M. and Zebker,, H. A. 1989. Mapping small elevation changes over large incas: differential radar interferoroetry. J. Geophys. Res., 94(B7), 9183-9191.
Goldstein,, R.M. 1995. Atmospheric limitations to repeat-track radar interferometry. Geophys. Res. Lett Lett., 22 (18) 2517-2520.
Goldstein,, R.M., Zebker,, H.A and Werner., C. L.,, 1988. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci., 23 (4), 713-720.
Goldstein,, R.M. Engelhardt, H. Kamb,, B. and Frolich,, R.M. 1993. Satellite radar interferomentry for monitoring ice sheel motion: application to an Antarctic ice stream. Science, 262 (5139). 1525- 1530.
Hartl,, P. Thiel., K.-H. Wu., X. Doake, C. S. M. and Sievers, J. 1994. Application of SAR interferometry with ERS-I in the Antarctic. Earth Observation Quarterly, 43, 1-4.
Higgins,, A.K. 1991. North Greenland glacier velocities and call ice production. Polarforschung, 60 (1). 1990, 1-23.
Holdsworth,, G. 1969. Flexure of a floaling ice tongue. J. Glaciol., 8 (54), 385-397.
Holdsworth,, G. 1977. Tidal interaction with ice shelves. Ann. Giophys., 33(1-2), 133-146.
Jacobs., S.S. H.H. Helmer,, C.S. Doake., M. Jenkins, A. and Frolich,, R.M. 1992. Meiling of ice shelves and the mass balance of Antarctica. J. Glaciol., 38 (130), 375-387.
Jacobs., S.S. Helmer, H.H. and Jenkins, A. 1996. Antarctic ice sheet melting in the southeast Pacific. Gtaphys. Res. Lett., 23 (9) 957-960.
Jenkins,, A. and Doake., C S. M. 1991. Ice-ocean interaction on Ronne Ice Shelf. Antarctica. J. Geophys. Res., 96 (Cl). 791-813.
Jezek,, K.C., Gogineni, P. and Rignot., E. 1995. Radio echo sounding of outlet glaciers, western Greenland, [Abstract] EOS, 76 (46). Fall Meeting Supplement. F183.
Joughin., I., Kwok,, R. Fahnestock,, M. Gogineni, S. and Allen, C. 1995a. Interferometrically derived topography, velocity, and ice-flux estimates for the Petermann Glacier. [Abstract.] EOS, 76 (46). Fall Meeiing Supplement, F184.
Joughin,, I.R., Winebrener,, D. P. and Fahnestock,, M.A. 1995b. Observalions of ice-sheet motion in Greenland using satellite radar interferometry. Geophys. Res. Lett., 22 (5). 571-574.
Kollmeyer,, R.C. 1980. West Greenland outlet glaciers: an inventory of the major iceberg producers. International Assoritition of Hydrological Science Publications 126 (Riederalp Workshop 1978 — World Glacier Inventory), 57-65.
Lewis,, E. L., and Perkin,, R.G. 1986. Ice pumps and their rates. J. Geophys. Res., 91(C10). 11,756-11,762.
Oerter,, H. and 6 other 1992. Evidence for basal marine ice in the Filchner-Ronne Ice Shelf. Nature, 358 (6385), 399-401.
Paterson,, W.S.B. 1994. The Physics of glaciers. Third edition. Oxford, etc., Elsevier.
Reeh,, N. 1985. Greenland ice-sheet mass balance and sea-level change. In Glaciers, ice sheets, and sea level: effect of CO2-induced climatic change. Report Workshop held in Seattle, Washington, September 13-15,1984. Washington, DC, U.S. Department of Energy. Office of Energy Research, 1964, Research. 155-171. (Attachment 8. Report DOE/ER/60235-1.)
Rignot,, E. 1995. Backscatter model for the unusual radar properties of the Greenland tee sheet. J. Geophys. Res., 100(E5), 9369-9400.
Rignot., E.J. Ostro., S.J. van Zyl, J.J and Jezek,, K.C. 1993. Unusual radar echoes from the Greenland ice sheet. Science, 261 (5129). 1710-1713.
Rignot,, E., Jezek,, K. C. and Sohn,, H. G. 1995. Ice flow dynamics of the Greenland ice sheet front SAR interferometry. Geophys. Res. Lett., 22 (5). 575-578.
Smith., A.M. 1991. The use of tiltmeters to study the dynamics of Anlarctie ice-shelf grounding lines. J. Glaciol., 37 (125), 51-58.
Smith,, A.M. In press. Ice shelf basal melting at the grounding line, measured from seismic observations. JGR Oceans.
Thomas,, R. H. 1976. I hiekeuingoflhe Ross Ice Shelf and equilibrium state of the West Antarctic ice sheet. Nature, 259 (5540). 180-183.
Thomas,, R.H. and Bentley,, C. R. 1978. A model for Holocene retreat of the West Antarctic ice sheet. Quat. Res., 10 (2). 150-170.
Vaughan,, D.G. 1995. Tidal flexure at ice shelf margins. J. Geophys., Res., 100(B4) 6213-6224.
Vaughan,, D. G. and Doake,, C.S.M. 1996. Recent atmospheric warming and retreat of ice shelves on the Antartic Peninsula. Nature. 379 (6563), 328-331.
Zebker,, H.A. and Goldstein,, R.M. 1966. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys.Res., 91(B5), 4993-4999.
Zebker,, H.A. Rosen,, P.A. Goldstein,, M. R. Gabriel, A. and Werner,, C. L. 1994. On the derivation of eoseismic displacement fields using differential radar interferometry: the Landers earthquake. J. Geophys. Res., 99(B10), 19, 617-19.634.

Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry

  • Eric Rignot (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed