## References

Adhikari, S and Huybrechts, P (2009) Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Ann. Glaciol., 50(52), 27–34 (doi: 10.3189/172756409789624346)

Adhikari, S and Marshall, SJ (2011) Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor. J. Glaciol., 57(206), 1003–1016 (doi: 10.3189/002214311798843449)

Adhikari, S and Marshall, SJ (2012) Parameterization of lateral drag in flowline models of glacier dynamics. J. Glaciol., 58(212), 1119–1132 (doi: 10.3189/2012JoG12J018)

Adhikari, S and Marshall, SJ (2013) Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains. Cryosphere, 7(5), 1527–1541 (doi: 10.5194/tc-7-1527-2013)

Aschwanden, A and Blatter, H (2005) Meltwater production due to strain heating in Storglaciären, Sweden. J. Geophys. Res., 110, F04024 (doi: 10.1029/2005JF000328)

Blatter, H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333–344

Bueler, E and Brown, J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res, 114, 1–21 (doi: 10.1029/2008JF001179)

Cornford, SL and 8 others (2013) Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys., 232(1), 529–549 (doi: 10.1016/j.jcp.2012.08.037)

Cuffey, K and Paterson, W.S.B. WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford

Flowers GE Roux, N, Pimentel, S and Schoof, CG (2011) Present dynamics and future prognosis of a slowly surging glacier. Cryosphere, 5(1), 299–313 (doi: 10.5194/tc-5-299-2011)

Gagliardini, O, Cohen, D, Råaback, P and Zwinger, T (2007) Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res., 112(F2), F02027 (doi: 10.1029/2006JF000576)

Gagliardini, O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev., 6(4), 1299–1318 (doi: 10.5194/gmd-6-1299-2013)

Goldberg, DN (2011) A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J. Glaciol., 57(201), 157–170 (doi: 10.3189/002214311795306763)

Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin

Hutter, K (1983) Theoretical glaciology: material science of ice and the mechanics of glaciers and ice sheets. Springer, Berlin

Huybrechts, P (1990) A 3-D model for Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Climate Dyn., 5, 79–92

Huybrechts, P, Payne, T and the EISMINT Intercomparison Group (1996) The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 1–12

Immerzeel, WW, Van Beek, LPH and Bierkens, MFP (2010) Climate change will affect the Asian water towers. Science, 328(5984), 1382–1385 (doi: 10.1126/science.1183188)

Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

Larour, E, Morlighem, M, Seroussi, H, Schiermeier, J and Rignot, E (2012) Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J. Geophys. Res., 117(F4), F04023 (doi: 10.1029/2012JF002371)

Le Meur, E, Gagliardini, O, Zwinger, T and Ruokolainen, J (2004) Glacier flow modelling: a comparison of the Shallow Ice Approximation and the full-Stokes solution. C. R. Phys., 5(7), 709–722 (doi: 10.1016/j.crhy.2004.10.001)

Leng, W, Ju, L, Gunzburger, M, Price, S and Ringler, T (2012) A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments. J. Geophys. Res., 117(F1) (doi: 10.1029/2011JF001962)

Leng, W, Ju, L, Gunzburger, M and Price, S (2013) Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models. Cryosphere, 7(1), 19–29 (doi: 10.5194/tc-7-19-2013)

Leng, W, Ju, L, Gunzburger, M and Price, S (2014a) A parallel computational model for three-dimensional, thermo-mechanical Stokes flow simulations of glaciers and ice sheets. Commun. Comput. Phys., 16, 1056–1080 (doi: 10.4208/cicp.310813.010414a)

Leng, W, Ju, L, Xie, Y, Cui, T and Gunzburger, M (2014b) Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation. J. Comput. Phys., 274, 299–311 (doi:10.1016/j.jcp.2014.06.014)

Morland, LW (1984) Thermo-mechanical balances of ice sheet flow. Geophys. Astrophys. Fluid Dyn., 29, 237–266

Morland, LW (1987) Dynamics of the West Antarctic ice sheet. D Reidel Publishing Co., 99–116

Nye, JF (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol., 5(41), 661–690

Oerlemans, J (1986) An attempt to simulate historic front variations of Nigardsbreen, Norway. Theor. Appl. Climatol., 37, 126–135

Oerlemans, J (1997) A flowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record. Ann. Glaciol., 24, 382–389

Pattyn, F (2002) Transient glacier response with a higher-order numerical ice-flow model. J. Glaciol., 48(162), 467–477 (doi: 10.3189/172756502781831278)

Pattyn, F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 2382 (doi: 10.1029/2002JB002329)

Pattyn, F (2008) Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol., 54(185), 353–361 (doi: 10.3189/002214308784886171)

Pattyn, F, Nolan, M, Rabus, B and Takahashi, S (2005) Localized basal motion of a polythermal Arctic glacier: McCall Glacier, Alaska, USA. Ann. Glaciol., 40, 1–5 (doi: 10.3189/172756405781813537)

Pattyn, F and 20 others (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM). Cryosphere, 2(2), 95–108 (doi: 10.5194/tcd-2-111-2008)

Pimentel, S, Flowers, GE and Schoof, CG (2010) A hydrologically coupled higher-order flow-band model of ice dynamics with a Coulomb friction sliding law. J. Geophys. Res., 115(F4), F04023 (doi: 10.1029/2009JF001621)

Price, SF and Walder, JS
(2007) Modeling the dynamic response of a crater glacier to lava-dome emplacement: Mount St Helens, Washington, USA. Ann. Glaciol., 45, 21–28 (doi: 10.3189/172756407782282525)

Price, SF, Waddington, ED and Conway, H (2007) A full-stress, thermomechanical flow band model using the finite volume method. J. Geophys. Res., 112(F3), F03020 (doi: 10.1029/2006JF000724)

Saito, F, Abe-Ouchi, A and Blatter, H (2003) Effects of first-order stress gradients in an ice sheet evaluated by a three-dimensional thermomechanical model. Ann. Glaciol., 37, 166–172

Schoof, C and Hewitt, I (2012) Ice-sheet dynamics. Annu. Rev. Fluid Mech., 217–239 (doi: 10.1146/annurev-fluid-011212-140632)

Schoof, C and Hindmarsh, RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math., 63(1), 73–114 (doi: 10.1093/qjmam/hbp025)

Seddik, H, Greve, R, Zwinger, T, Gillet-Chaulet, F and Gagliardini, O (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol., 58(209), 427–440 (doi: 10.3189/2012JoG11J177)

Zhang, T, Xiao, C, Qin, X, Hou, D and Ding, M (2012) Ice thickness observation and landform study of East Rongbuk Glacier, Mt Qomolangma. J. Glaciol. Geocryol., 34(5), 1059–1066 [in Chinese with English abstract]

Zhang, T and 7 others (2013) Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. J. Glaciol., 59, 438–448 (doi: 10.3189/2013JoG12J202)

Zwinger, T, Greve, R, Gagliardini, O and Shiraiwa, T (2007) A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol., 45, 29–37