Skip to main content Accessibility help
×
Home

Surficial Glaciology of Jakobshavns Isbræ, West Greenland: Part II. Ablation, accumulation and temperature

  • Κ. Echelmeyer (a1), W. D. Harrison (a1), T. S. Clarke (a1) and C. Benson (a1)

Abstract

Accumulation studies along the lowermost 100 km of Jakobshavns Isbræ show that the local net balance above the equilibrium line (1210 m elevation in 1986) is significantly less than that measured along the EGIG line about 100 km further north. This indicates the presence of a precipitation low in this region which will affect any global mass-balance assessment for the Jakobshavns Isbræ drainage basin. Comparison of the estimated calving and ablation fluxes shows that calving removes about twice as much mass from this drainage basin as does melting. Basal melting over the entire basin accounts for about 20% of the total ice loss by ablation. Temperature measurements at 12 m depth along the same section of the Isbræ show the warming effects of refreezing meltwater and cooling effects of severe crevassing. In addition, there is a significant variation in temperature across the fast-moving ice stream which is probably caused by deformation heating in the shear margins which delineate the ice stream within the ice sheet. This lateral temperature gradient could be important in ice-stream dynamics through its effects on ice rheology. Detailed measurements within the percolation fades show that surface melt can penetrate up to 3 m by piping in cold firn, and, upon refreezing, can cause significant warming at these depths.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surficial Glaciology of Jakobshavns Isbræ, West Greenland: Part II. Ablation, accumulation and temperature
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Surficial Glaciology of Jakobshavns Isbræ, West Greenland: Part II. Ablation, accumulation and temperature
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Surficial Glaciology of Jakobshavns Isbræ, West Greenland: Part II. Ablation, accumulation and temperature
      Available formats
      ×

Copyright

References

Hide All
Ambach, W. 1963. Untersuchungen zum Energieumsatz in der Ablationszonc des grænländischen Inlandeises (Camp IV-EGIG, 69°40’05”Ν, 49°37’58” W). Medd. Grønl., 174 (4).
Ambach, W. 1977. Untersuchungen zum Energicumsatz in der Ablationszonc des grþnländischen Inlandeises Nachtrag. Medd. Grønl, 187 (5).
Bader, H. 1961. The Greenland ice sheet. CRREL Monogr. I-B2.
Bauer, Α., Ambach, W. and Schimpp, O. 1968. Movement et Variation d’altitude de la zone d’ablation oest (latitude moyenne 60°40’N) de l’inlandsis du Groenland entre 1948 et 1959. Medd. Gr0nl., 174 (1).
Bender, G. 1984. The distribution of snow accumulation on the Greenland ice sheet. (M.S. thesis, University of Alaska Fairbanks.)
Benson, C. S. 1962. Stratigraphie studies in the snow and firn of the Greenland ice sheet. SIPRE Rea. Rep. 70.
Bindschadler, R. A. 1984. Jakobshavns glacier drainage basin: a balance assessment. J. Geophys. Res., 89 (C2), 20662072.
Bindschadler, R.Α., Zwally, H. J., Major, J. and Brenner, A. 1989. Surface topography of the Greenland ice sheet from satellite radar altimetry. Washington, DC, National Aeronautics and Space Administration. (NASA SP-503.)
Braithwaite, R. J. and Olesen, O. B. 1990. Simple energybalance model to calculate ice ablation at the margin of the Greenland ice sheet. J. Glaciol., 36 (123), 222228.
Braithwaite, R. J. and Thomsen, Η. H. 1984. Runoff conditions at Kuussuup Tasia, Christianshab, estimated by modelling. Grønl. Geol. Undersßgelse. Gletscher-Hydrol. Medd., 84 (2).
Colbeck, S. C. 1976. An analysis of water flow in dry snow. Water Resour. Res., 12 (3), 523527.
Echelmeyer, K. and Harrison, W. D. 1990. Jakobshavns Isbræ, West Greenland: seasonal variations in velocity — or lack thereof. J. Glaciol,, 36 (122), 8288.
Echelmeyer, K., Clarke, T. S. and Harrison, W. D. 1991. Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. J. Glaciol., 37 (127), 368382.
Hooke, R. LeB 1976. Near-surface temperatures in the superimposed ice zone and lower part of the soaked zone of polar ice sheets. J. Glaciol., 16 (74), 302304.
Hooke, R. LeB, Gould, J. E. and Brzozowski, J. 1983. Near-surface temperatures near and below the equilibrium line on polar and subpolar glaciers. Z. Gletschcrkd. Glazialgeol, 19 (1), 125.
Heuberger, J. C. 1954. Groenland glaciologie. Vol, I. Forages sur l’inlandsis. Paris, Hermann and Cie.
Hughes, T. 1975. The West Antarctic ice sheet: instability, disintegration, and initiation of ice ages. Rev. Geophys. Space Phys., 13 (4), 502526.
Iken, Α., Echelmeyer, Κ. Harrison, W. and Funk, M. In press. Temperature and water level measurements in deep boreholes in Jakobshavns Isbræ, Greenland. J. Glaciol.
Marsh, P. and Woo, M.-k. 1984. Wetting front advance and freezing of meltwater within a snowcover. 1. Observations in the Canadian Arctic. Water Resour. Res., 20 (12), 18531864.
Müller, F. 1976. On the thermal regime of a high-Arctic valley glacier. J. Glaciol, 16 (74), 119133.
National Research Council. 1985. Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-induccd Climatic Change. Report of a workshop held in Seattle, Washington, September 13–15, 1984. Washington, DC, United States Department of Energy.
Ohmura, A. 1987. New temperature distribution maps for Greenland. Z. Gletscherfcd, Glazialgeol., 23 (1), 145.
Paterson, W. S. B. 1981. The physics of glaciers. Second edition. Oxford, etc., Pergamon Press.
Pelto, M. S., Hughes, T. J. and Brecher, H. H. 1989. Equilibrium state of Jakobshavns Isbræ, West Greenland. Ann. Glaciol, 12, 127131.
Pfeffer, W. T., Illangasckarc, T. H. and Meier, M. F. 1990. Analysis and modeling of melt-water refreezing in dry snow. J. Glaciol., 36 (123), 238246.
Quintana, C. and Echelmeyer, K. 1986. Ice fabric analysis from Jakobshavns glacier, Greenland. In Chapman Conference of Rapid Glacier Flow, Whistler, B. C., May 1986. Abstract volume. Washington, DC, American Geophysical Union, 16.
Radok, U., Barry, R. G., Jcnsscn, D., Keen, R. A., Kiladis, G. N. and B. Mclnnes. 1982. Climatic and physical characteristics of the Greenland ice sheet. Parts I and II. Boulder, CO, University of Colorado. Cooperative Institute for Research in Environmental Sciences.
Rceh, N. 1985. Greenland ice-sheet mass balance and sea-level change. Jn National Research Council. 1985. Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-induced Climatic Change. Report of a workshop held in Seattle, Washington, September 13–15, 1984. Washington, DC, United States Department of Energy, 155171.
Thomsen, H. H. 1984. Mass balance measurements at the margin of the inland ice near Jakobshavn, West Greenland. Polarforschung, 54 (1), 3741.
Williams, R. S., Jr, Hall, D. K. and Benson, C. S. 1991. Analysis of glacier facies using satellite techniques. J. Glaciol., 37 (125), 120128.
Zwally, H. J. 1989. Growth of Greenland ice sheet: an interpretation. Scieîice, 246 (4937), 1589 1591.
Zwally, H. J., Brenner, A., Major, J., Bindschadler, R. and Marsh, J. 1989. Growth of Greenland ice sheet: measurement. Science, 246 (4937), 15871589.

Surficial Glaciology of Jakobshavns Isbræ, West Greenland: Part II. Ablation, accumulation and temperature

  • Κ. Echelmeyer (a1), W. D. Harrison (a1), T. S. Clarke (a1) and C. Benson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed