Skip to main content Accessibility help
×
Home

Subsurface hydrology of an overdeepened cirque glacier

  • Christine F. Dow (a1), Jeffrey L. Kavanaugh (a1), Johnny W. Sanders (a2), Kurt M. Cuffey (a3) and Kelly R. MacGregor (a4)...

Abstract

To investigate the subsurface hydrological characteristics of an overdeepened cirque glacier, nine boreholes were drilled to the bed of West Washmawapta Glacier, British Columbia, Canada, in summer 2007. All holes were surveyed with a video camera, and four were subsequently instrumented with a combination of pressure transducers, thermistors and conductivity sensors. Diurnal pressure and temperature records indicate the presence of a hydraulically connected subglacial drainage system towards the northern glacier margin. Hydraulic jacking in the overdeepening, controlled by changing water volume in the marginal zone, potentially impacts basal ice flow and erosion. The presence of a sediment layer underlying the glacier also likely impacts hydrology and ice dynamics. Influx of warm groundwater into the basal system raises subglacial water temperatures above the pressure-melting point (pmp) and induces diurnal water temperature fluctuations of as much as 0.8°C; water temperatures above the pmp could affect basal melt rates and the development of subglacial drainage systems. These observations suggest that the characteristics of the subglacial drainage system substantially affect patterns of flow and erosion by this small cirque glacier.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Subsurface hydrology of an overdeepened cirque glacier
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Subsurface hydrology of an overdeepened cirque glacier
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Subsurface hydrology of an overdeepened cirque glacier
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B., Cuffey, K.M., Evenson, E.B., Strasser, J.C., Lawson, D.E. and Larson, G.J.. 1997. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev, 16(9), 10171038.
Alley, R. B., Lawson, D.E., Evenson, E.B., Strasser, J.C. and Larson, G.J.. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory. J. Glaciol, 44(148), 563569.
Alley, R.B., Lawson, D.E., Evenson, E.B. and Larson, G.J.. 2003a. Sediment, glaciohydraulic supercooling, and fast glacier flow. Ann. Glaciol, 36, 135141.
Alley, R.B., Lawson, D.E., Larson, G.J., Evenson, E.B. and Baker, G.S.. 2003b. Stabilizing feedbacks in glacier-bed erosion. Nature, 424(6950), 758760.
Bates, P.D., Siegert, M.J., Lee, V., Hubbard, B.P. and Nienow, P.W.. 2003. Numerical simulation of three-dimensional velocity fields in pressurized and non-pressurized Nye channels. Ann. Glaciol, 37, 281285.
Bayley, O.D.R. 2007. Temperature of a ‘temperate’ Alpine glacier: Glacier de Tsanfleuron, Switzerland. (PhD thesis, University of Aberystwyth.)
Clarke, G.K.C. 1987. Subglacial till: a physical framework for its properties and processes. J. Geophys. Res, 92(B9), 90239036.
Clarke, G.K.C. 2005. Subglacial processes. Annu. Rev. Earth Planet. Sci, 33, 247276.
Cohen, D., Hooyer, T.S., Iverson, N.R., Thomason, J.F. and Jackson, M.. 2006. Role of transient water pressure in quarrying: a subglacial experiment using acoustic emissions. J. Geophys. Res, 111(F3), F03006. (10.1029/2005JF000439.)
Collins, D.N. 1979. Hydrochemistry of meltwaters draining from an Alpine glacier. Arct. Alp. Res, 11(3), 307324.
Cuffey, K.M. and Paterson, W.S.B.. 2010. The physics of glaciers. Fourth edition. Oxford, Butterworth-Heinemann.
Flowers, G.E. 2000. A multicomponent coupled model of glacier hydrology. (PhD thesis, University of British Columbia.)
Flowers, G.E. and Clarke, G.K.C.. 2002. A multicomponent coupled model of glacier hydrology: 1. Theory and synthetic examples. J. Geophys. Res, 107(B11), 2287. (10.1029/2001JB001122.)
Fountain, A.G. 1994. Borehole water-level variations and implications for the subglacial hydraulics of South Cascade Glacier, Washington State, USA. J. Glaciol, 40(135), 293304.
Fountain, A.G. and Walder, J.S.. 1998. Water flow through temperate glaciers. Rev. Geophys, 36(3), 299328.
Fountain, A.G., Jacobel, R.W., Schlichting, R. and Jansson, P.. 2005. Fractures as the main pathways of water flow in temperate glaciers. Nature, 433(7026), 618621.
Fudge, T.J., Humphrey, N.F., Harper, J.T. and Pfeffer, W.T.. 2008. Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA. J. Glaciol, 54(185), 297306.
Gurnell, A.M. and Fenn, C.R.. 1985. Spatial and temporal variations in electrical conductivity in a pro-glacial stream system. J. Glaciol, 31(108), 108114.
Hallet, B. 1979. A theoretical model of glacial abrasion. J. Glaciol, 23(89), 3950.
Hantz, D. and Lliboutry, L.. 1983. Waterways, ice permeability at depth, and water pressures at Glacier d’Argentière, French Alps. J. Glaciol, 29(102), 227239.
Harper, J.T., Humphrey, N.F., Pfeffer, W.T., Fudge, T. and O’Neel, S.. 2005. Evolution of subglacial water pressure along a glacier’s length. Ann. Glaciol, 40, 3136.
Harper, J.T., Bradford, J.H., Humphrey, N.F. and Meierbachtol, T.W.. 2010. Vertical extension of the subglacial drainage system into basal crevasses. Nature, 467(7315), 579582.
Harrison, W.D. 1975. Temperature measurements in a temperate glacier. J. Glaciol, 14(70), 2330.
Hock, R. 2003. Temperature index melt modelling in mountain areas. J. Hydrol, 282(1–4), 104115.
Hooke, R.LeB. 1991. Positive feedbacks associated with erosion of glacial cirques and overdeepenings. Geol. Soc. Am. Bull, 103(8), 11041108.
Hooke, R.LeB. and Pohjola, V.A.. 1994. Hydrology of a segment of a glacier situated in an overdeepening, Storglaciären, Sweden. J. Glaciol, 40(134), 140148.
Hooke, R.LeB., Miller, S.B. and Kohler, J.. 1988. Character of the englacial and subglacial drainage system in the upper part of the ablation area of Storglaciären, Sweden. J. Glaciol, 34(117), 228231.
Iken, A. and Bindschadler, R.A.. 1986. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol, 32(110), 101119.
Iken, A., Röthlisberger, H., Flotron, A. and Haeberli, W.. 1983. The uplift of Unteraargletscher at the beginning of the melt season – a consequence of water storage at the bed? J. Glaciol, 29(101), 2847.
Iverson, N.R. 1991. Potential effects of subglacial water-pressure fluctuations on quarrying. J. Glaciol, 37(125), 2736.
Iverson, N.R., Hanson, B., Hooke, R.LeB. and Jansson, P.. 1995. Flow mechanism of glaciers on soft beds. Science, 267(5194), 8081.
Jansson, P., Hock, R. and Schneider, T.. 2003. The concept of glacier storage: a review. J. Hydrol, 282(1–4), 116129.
Kavanaugh, J.L. 2009. Exploring glacier dynamics with subglacial water pressure pulses: evidence for self-organized criticality? J. Geophys. Res, 114(F1), F01021. (10.1029/2008JF001036.)
Kavanaugh, J.L. and Clarke, G.K.C.. 2006. Discrimination of the flow law for subglacial sediment using in situ measurements and an interpretation model. J. Geophys. Res, 111(F1), F01002. (10.1029/2005JF000346.)
Kavanaugh, J.L., Moore, P.L., Dow, C.F. and Sanders, J.W.. 2010. Using pressure pulse seismology to examine basal criticality and the influence of sticky spots on glacial flow. J. Geophys. Res, 115(F4), F04025. (10.1029/2010JF001666.)
Lappegard, G. and Kohler, J.. 2005. Determination of basal hydraulic systems based on subglacial high-pressure pump experiments. Ann. Glaciol, 40, 3742.
Lliboutry, L. 1971. Permeability, brine content and temperature of temperate ice. J. Glaciol, 10(58), 1529.
Lliboutry, L. 1983. Modifications to the theory of intraglacial waterways for the case of subglacial ones. J. Glaciol, 29(102), 216226.
Murray, T. and Clarke, G.K.C.. 1995. Black-box modeling of the subglacial water system. J. Geophys. Res, 100(B7), 10,23110,245.
Piotrowski, J.A. 2003. Glaciers at work. Nature, 424(6950), 737738.
Pohjola, V.A. 1994. TV-video observations of englacial voids in Storglaciären, Sweden. J. Glaciol, 40(135), 231240.
Riihimaki, C.A., MacGregor, K.R., Anderson, R.S., Anderson, S.P. and Loso, M.G.. 2005. Sediment evacuation and glacial erosion rates at a small alpine glacier. J. Geophys. Res, 110(F3), F03003. (10.1029/2004JF000189.)
Roberts, M.J. and 7 others. 2002. Glaciohydraulic supercooling in Iceland. Geology, 30(5), 439442.
Röthlisberger, H. 1972. Water pressure in intra- and subglacial channels. J. Glaciol, 11(62), 177203.
Röthlisberger, H. and Lang, H.. 1987. Glacial hydrology. In Gurnell, A.M. and Clark, M.J., eds. Glacio-fluvial sediment transfer: an alpine perspective. Chichester, etc., Wiley, 207284.
Sanders, J.W., Cuffey, K.M., MacGregor, K.R., Kavanaugh, J.L. and Dow, C.F.. 2010. Dynamics of an alpine cirque glacier. Am. J. Sci, 310(8), 753773.
Schuler, T., Fischer, U.H. and Gudmundsson, G.H.. 2004. Diurnal variability of subglacial drainage conditions as revealed by tracer experiments. J. Geophys. Res, 109(F2), F02008. (10.1029/2003JF000082.)
Shreve, R.L. 1972. Movement of water in glaciers. J. Glaciol, 11(62), 205214.
Stone, D.B. and Clarke, G.K.C.. 1993. Estimation of subglacial hydraulic properties from induced changes in basal water pressure: a theoretical framework for borehole-response tests. J. Glaciol, 39(132), 327340.
Tweed, F.S., Roberts, M.J. and Russell, A.J.. 2005. Hydrologic monitoring of supercooled meltwater from Icelandic glaciers. Quat. Sci. Rev, 24(22), 23082318.
Zotikov, I.A. 1986. The thermophysics of glaciers. Dordrecht, etc., D. Reidel Publishing Co.
Zurbuchen, J.M. 2000. Precision thermistor thermometry. Measurement science conference tutorial: thermometry – fundamentals and practice. Dayton, OH, Measurement Specialties. (Application Note TD002.)

Subsurface hydrology of an overdeepened cirque glacier

  • Christine F. Dow (a1), Jeffrey L. Kavanaugh (a1), Johnny W. Sanders (a2), Kurt M. Cuffey (a3) and Kelly R. MacGregor (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed