Skip to main content Accessibility help
×
Home

Subaqueous calving margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National Park, New Zealand

  • Clare M. Robertson (a1), Douglas I. Benn (a2) (a3), Martin S. Brook (a1), lan C. Fuller (a1) and Kat A. Holt (a1)...

Abstract

The subaqueous margins of calving glaciers have the potential to make significant contributions to glacier mass loss. However, to date, very little is known about the morphology and development of subaqueous margins. A unique combination of sub-bottom profile and bathymetric data collected between 2008 and 2010 in proglacial lakes at Mueller, Hooker and Tasman glaciers in New Zealand’s Southern Alps reveal subaqueous ice ramps extending up to 510 m from the terminus of each glacier. Ice ramp surfaces are undulating and covered with a thick layer (up to 10 m) of unsorted sediment derived from supraglacial and englacial debris, lateral moraines and deltaic deposits. A cyclic calving pattern, relatively stable lake level and the debris cover appear to control the development and maintenance of these ice ramps. High subaerial retreat rates generally correspond to high subaqueous calving rates, although the highest subaerial retreat rates are not associated with the largest ice ramp. Debris mantling the subaqueous ice ramp surfaces insulates the ice from melting and also reduces buoyant forces acting on the terminus. Comparisons with previous studies show that the ice ramps evolve over time with changes in glacier dynamics and water-body properties.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Subaqueous calving margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National Park, New Zealand
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Subaqueous calving margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National Park, New Zealand
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Subaqueous calving margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National Park, New Zealand
      Available formats
      ×

Copyright

References

Hide All
Anderton, PW (1975) Tasman Glacier 1971–73. Hydrological Research. Ministry of Works and Development for the National Water and Soil Conservation Organisation, Wellington (Annual Report 33)
Benn, DI, Wiseman, S and Hands, KA (2001) Growth and drainage of supraglacial lakes on the debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol., 47(159), 626638 (doi: 10.3189/172756501781831729)
Benn, DI, Warren, CW and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(34), 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Black Laser Learning (2006) Not in the manual guide to sub-bottom profiler surveys. Black Laser Learning, Hockessin, DE
Blair, RW Jr (1994) Moraine and valley wall collapse due to rapid deglaciation in Mount Cook National Park, New Zealand. Mt. Res. Dev., 14(4), 347358
Boyce, ES, Motyka, RJ and Truffer, M (2007) Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA. J. Glaciol., 53(181), 211224 (doi: 10.3189/172756507782202928)
Chinn, TJ (1996) New Zealand glacier responses to climate change of the past century. New Zeal. J. Geol. Geophys., 39(3), 415428
Cox, SC and Barrell, DJA (2007) Geology of the Aoraki area: scale 1:250,000. GNS Science, Lower Hutt (Institute of Geological and Nuclear Sciences) 1:250,000 geological map 15.
Duck, RW and Herbert, RA (2006) High-resolution shallow seismic identification of gas escape features in the sediments of Loch Tay, Scotland: tectonic and microbiological associations. Sedimentology, 53(3), 481493 (doi: 10.1111/j.1365–3091.2006.00778.x)
Dykes, RC, Brook, MS and Winkler, S (2010) The contemporary retreat of Tasman Glacier, Southern Alps, New Zealand, and the evolution of Tasman proglacial lake since AD 2000. Erdkunde, 64(2), 141154 (doi: 10.3112/erdkunde.2010.02.03)
Dykes, RC, Brook, MS, Robertson, CM and Fuller, IC (2011) Twenty-first century calving retreat of Tasman Glacier, Southern Alps, New Zealand. Arct. Antarct. Alp. Res., 43(1), 110 (doi: 10.1657/1938–4246–43.1.1)
EdgeTech (2005) Discover sub-bottom profiler processor software: technical and user’s manual, revision 2.2. EdgeTech, West Wareham, MA
Eijpen, KJ, Warren, CR and Benn, DI (2003) Subaqueous melt rates at calving termini: a laboratory approach. Ann. Glaciol., 36, 179183 (doi: 10.3189/172756403781816158)
Garmin Ltd (2007) Owner’s manual eTrex HC series, personal navigator. Garmin International, Olathe, KS
Gellatly, AF (1985) Historical records of glacier fluctuations in Mt Cook National Park, New Zealand: a century of change. Geogr. J., 151(1), 8699
Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, T, Fitzharris, B and Hagen, JO (2011) Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data. J. Glaciol., 57(204), 667683 (doi: 10.3189/002214311797409749)
Griffiths, GA and McSaveney, MJ (1983) Distribution of mean annual precipitation across steep land regions of New Zealand. New Zeal. J. Science, 26(2), 197209
Hambrey, MJ and Ehrmann, W (2004) Modification of sediment characteristics during glacial transport in high-alpine catchments: Mount Cook area, New Zealand. Boreas, 33(4), 300318 (doi: 10.1111/j.1502–3885.2004.tb01243.x)
Hambrey, MJ, Quincey, DJ, Glasser, NF, Reynolds, JM, Richardson, SJ and Clemmens, S (2008) Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat. Sci. Rev., 27(2526), 23612389 (doi: 10.1016/j.quascirev.2008.08.010)
Haresign, E and Warren, CR (2005) Melt rates at calving termini: a study at Glaciar León, Chilean Patagonia. In Harris, C and Murton, JB eds. Cryospheric systems: glaciers and permafrost. Geological Society, London, 99110 (Geological Society Special Publication 242)
Hochstein, MP, Claridge, D, Henrys, SA, Pyne, A, Nobes, DC and Leary, SF (1995) Downwasting of the Tasman Glacier (South Island, N.Z.): changes in the terminus region between 1971 and 1993. New Zeal. J. Geol. Geophys., 38(1), 116
Hochstein, MP, Watson, MI, Malengrenau, B, Nobes, DC and Owens, I (1998) Rapid melting of the terminal section of the Hooker Glacier (Mt Cook National Park, New Zealand). New Zeal. J. Geol. Geophys., 41(3), 203218
Howarth, PJ and Price, RJ (1969) The proglacial lakes of Breiðamerkurjökull and Fláarjökull, Iceland. Geogr. J., 135(4), 573581
Hunter, LE and Powell, RD (1998) Ice foot development at temperate tidewater margins in Alaska. Geophys. Res. Lett., 25(11), 19231926 (doi: 10.1029/98GL01403)
Jakobsson, M (1999) First high-resolution chirp sonar profiles from the central Arctic Ocean reveal erosion of Lomonosov Ridge sediments. Mar. Geol., 158(14), 111123 (doi: 10.1016/S0025-3227(98)00186–8)
Kirkbride, MP (1993) The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. Holocene, 3(3), 232240 (doi: 10.1177/095968369300300305)
Kirkbride, MP and Warren, CR (1997) Calving processes at a grounded ice cliff. Ann. Glaciol., 24, 116121
Kirkbride, MP and Warren, CR (1999) Tasman Glacier, New Zealand: 20th-century thinning and predicted calving retreat. Global Planet. Change, 22(14), 1128
Lafferty, B, Quinn, R and Breen, C (2006) A side-scan sonar and high- resolution Chirp sub-bottom profile study of the natural and anthropogenic sedimentary record of Lower Lough Erne, northwestern Ireland. J. Archaeol. Sci., 33(6), 756766 (doi: 10.1016/j.jas.2005.10.007)
Mattson, LE, Gardner, JS and Young, GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publ. 218 (Symposium at Kathmandu 1992 – Snow and Glacier Hydrology), 289296
Motyka, RJ (1997) Deep-water calving at Le Conte Glacier, southeast Alaska. In Van der Veen, CJ ed. Calving glaciers: a report of a workshop, 28 February-2 March 1997, Columbus, OH. Ohio State University, Columbus, OH, 115118 (Byrd Polar Research Centre Report 15)
Motyka, RJ, Hunter, L, Echelmeyer, KA and Connor, C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol., 36, 5765 (doi: 10.3189/172756403781816374)
Mullins, HT and Halfman, JD (2001) High-resolution seismic reflection evidence for Middle Holocene environmental change, Owasco Lake, New York. Quat. Res., 55(3), 322331 (doi: 10.1006/qres.2001.2232)
Nick, FM and 8 others (2012) The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol., 58(208), 229239 (doi: 10.3189/2012JoG11J242)
Østrem, G (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann., 41(4), 228230
Pantin, HM and Wright, IC (1994) Submarine hydrothermal activity within the offshore Taupo Volcanic Zone, Bay of Plenty continental shelf, New Zealand. Continental Shelf Res., 14(1314), 14111438 (doi: 10.1016/0278–4343(94)90083–3)
Purdie, JM (1996) Ice loss at the terminus of the Tasman Glacier. (MSc thesis, University of Otago)
Purdie, J and Fitzharris, B (1999) Processes and rates of ice loss at the terminus of Tasman Glacier, New Zealand. Global Planet. Change, 22(14), 7991
Quincey, DJ and Glasser, NF (2009) Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007. Global Planet. Change, 68(3), 185197 (doi: 10.1016/j.gloplacha.2009.05.003)
Röhl, K (2005) Terminus disintegration of debris-covered, lake-calving glaciers. (PhD thesis, University of Otago)
Röhl, K (2006) Thermo-erosional notch development at fresh-water- calving Tasman Glacier, New Zealand. J. Glaciol., 52(177), 203213 (doi: 10.3189/172756506781828773)
Röhl, K (2008) Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J. Glaciol., 54(188), 867880 (doi: 10.3189/002214308787779861)
Schock, SG, LeBlanc, LR and Mayer, LA (1989) Chirp sub-bottom profiler for quantitative sediment analysis. Geophysics, 54(4), 445450 (doi: 10.1190/1.1442670)
Venteris, ER (1999) Rapid tidewater glacier retreat: a comparison between Columbia Glacier, Alaska and Patagonian calving glaciers. Global Planet. Change, 22(14), 131138
Warren, CR (1999) Calving speed in freshwater at Glaciar Ameghino, Patagonia. Z. Gletscherkd. Glazialgeol., 35(1), 2134
Warren, CR and Kirkbride, MP (1998) Temperature and bathymetry of ice-contact lakes in Mount Cook National Park, New Zealand. New Zeal. J. Geol. Geophys., 41(2), 133143
Watson, MI (1995) Geophysical and glaciological studies of the Tasman and Mueller Glaciers. (MSc thesis, University of Auckland)
Zhou, X-H, Jiang, XJ and Shi, YZ (2007) Application of side scan and sub-bottom profile in the checking of submerged pipeline in Hangzhou Bay. Hydrogr. Surv. Charting, 04 [In Chinese]

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed