Skip to main content Accessibility help
×
Home

A Stochastic Model of Atmospheric Rime Icing

  • E.M. Gates (a1), A. Liu (a1) and E.P. Lozowski (a2)

Abstract

The accumulation of rime ice on structures, due to the impact and freezing of small water droplets, has been modelled as a stochastic process. Individual droplets are introduced into the flow field about the structure at a random position. Their trajectories are then calculated to determine the position of impact on the structure, or on previously impacted droplets. By assuming that the droplets maintain their shape on impact, the modelled accretion is gradually built up, one droplet at a time.

In the present paper, attention has been limited to a circular cylinder as the collecting structure, and it has been assumed that the flow field and the ice accumulation are strictly two-dimensional. With these assumptions, the influence of the droplet/cylinder diameter ratio and of the air speed upon the resulting predictions has been investigated. The main feature of interest in the model prediction is the development, near the edges of the accumulation, of discrete structures called “rime feathers”. The mechanism for the growth of these rime feathers is described, and a comparison is made between the characteristics of the predicted structures and of some natural rime feathers grown in an icing wind tunnel.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Stochastic Model of Atmospheric Rime Icing
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Stochastic Model of Atmospheric Rime Icing
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Stochastic Model of Atmospheric Rime Icing
      Available formats
      ×

Copyright

References

Hide All
Ackley, S.F. Templeton, M.K. 1979 Computer modeling of atmospheric ice accretion. CRREL Report 794.
Beard, K.V. Pruppacher, H.R. 1969 A determination of the terminal velocity and drag of small water droplets by means of a wind tunnel. Journal of the Atmospheric Sciences, 26, 106672.
Buser, O. Aufdermaur, A.N. 1973 The density of rime on cylinders. Quarterly Journal of the Royal Meteorological Society, 99(420), 38891.
Cansdale, J.T. Gent, R.W. 1983 Ice accretion on aerofoils in two–dimensional compressible flow. A theoretical model. Farnborough, Royal Aeronautical Establishment. (Technical Report 82128.)
Gates, E.M. 1981 FROST tunnel. Edmonton, University of Alberta. Department of Mechanical Engineering. (Report 26.)
Langmuir, I. Blodgett, K.B. 1946 A mathematical investigation of water droplet trajectories. In Langmuir, I.. Collected works. Vol. 10. Oxford, Pergamon Press, 34893.
Lozowski, E.P. Stallabrass, J.R. Hearty, P.F. 1983[a] The icing of an unheated, nonrotating cylinder. Part I: A simulation model. Journal of Climate and Applied Meteorology, 22(12), 205362.
Lozowski, E.P. Stallabrass, J.R. Hearty, P.F. 1983[b]. The icing of an unheated, nonrotating cylinder. Part II: Icing wind tunnel experiments. Journal of Climate and Applied Meteorology, 22(12), 206374.
Makkonen, L.J. Stallabrass, J.R. 1984 Ice accretion on cylinders and wires. Ottawa, National Research Council of Canada. (Technical Report TR–LT–005.)
Personne, P. Peigny, L. Soulage, M. Soulage, R.G. 1984 Observation d'une forme particulière de givre sur des cables: quelle explication? Journal de Recherches Atmosphériques, 18, 20508.
Sander, L.M. 1987 Fractal growth. Scientific American, 256, 94100.

A Stochastic Model of Atmospheric Rime Icing

  • E.M. Gates (a1), A. Liu (a1) and E.P. Lozowski (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed