Skip to main content Accessibility help
×
×
Home

Statistical behaviour of the deformation for first loading of polycrystalline ice

  • Lorne W. Gold (a1)

Abstract

A statistical analysis of the lengths of grain-boundary and transgranular cracks induced during the initial straining of columnar-grain ice by a compressive load applied perpendicular to the long direction of the columns is presented. The analysis shows that the crack lengths are randomly distributed and form distinct but correlated populations.The lognormal distribution function is shown to be a good descriptor of the populations for 5–90% of their range. Statistical models are presented for the lognormal behaviour of the crack-length distribution and for the strain dependence of the crack density. The models assume that a change in the value of the random variable of the respective population depends on the population value of the variable at the time of the change. It is shown that the model for the strain dependence of the crack density is suitable for the strain dependence of the acoustic emission, measured in both columnar-grain and granular ice subject to constant compressive loads. Evidence is also presented for a lognormal dependence of the dislocation density on strain. The analysis demonstrates that the cracks that form during the initial straining of polycrystalline ice are independent, random events and that the resulting crack populations are precursors to failure by fracture.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Statistical behaviour of the deformation for first loading of polycrystalline ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Statistical behaviour of the deformation for first loading of polycrystalline ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Statistical behaviour of the deformation for first loading of polycrystalline ice
      Available formats
      ×

Copyright

References

Hide All
Aitchison, J. and Brown, J. A. C.. 1969.The lognormal distribution. Cambridge, Cambridge University Press.
Cole, D. M. 1986. Effect of grain size on the internal fracturing of polycrystalline ice. CRREL Rep. 86-5.
Cole, D. M. 2001. The microstructure of ice and its influence on mechanical properties. Eng. Frac. Mech., 68(17–18), 17971822.
Cole, D. M. and Durell, G. D.. 2001. A dislocation-based analysis of strain history effects in ice. Philos. Mag. A, 81(7), 18491872.
Cramér, H. 1966. Mathematical methods of statistics. Princeton, NJ, Princeton University Press.
Frost, H. J. and Gupta, V.. 1993. Crack nucleation mechanisms and fracture toughness measurements in freshwater ice. In Ice mechanics.Vol. AMD-163 . NewYork, American Society of Mechanical Engineers. Applied Mechanics Division, 235250.
Glen, J.W. and Perutz, M. F.. 1954. The growth and deformation of ice crystals. J. Glaciol., 2(16), 397403/395–396.
Gold, L.W. 1960. The cracking activity in ice during creep. Can. J. Phys., 38(9), 11371148.
Gold, L.W. 1963. Deformation mechanisms in ice. In Kingery, W. D., ed. Ice and snow: properties, processes, and applications. Cambridge, MA, M.I.T. Press, 827.
Gold, L.W. 1972a. The failure process in columnar-grained ice. (Ph.D. thesis, McGill University, Montréal, Que.)
Gold, L.W. 1972b. The process of failure of columnar-grained ice. Philos. Mag., 26(2), 311328.
Gold, L.W. 1977. Engineering properties of fresh-water ice. J. Glaciol., 19(81), 197212.
Gold, L.W. 1997. Statistical characteristics for the type and length of deformation-induced cracks in columnar-grain ice. J. Glaciol., 43(144), 311320.
Gold, L.W. 1999a. A statistical basis for the strength of columnar-grain ice. In Shen, H.T., ed. Ice in surface waters. Vol. 1. Rotterdam, A. A. Balkema, 529535.
Gold, L.W. 1999b. Statistical characteristics for the strain-dependent density and the spatial position for deformation-induced cracks in columnar-grain ice. J. Glaciol., 45(150), 264272.
Gold, L.W. In press. Strain and temperature dependence of crack populations in columnar-grain ice. Can. J. Phys.
Jordaan, I. J. and Xiao, J.. 1999. Compressive failure of ice. In Shen, H.T., ed. Ice in surface waters. Vol. 2. Rotterdam, A. A. Balkema, 10251031.
Kim, J. and Shyam Sunder, S.. 1997. Statistical effects on the evolution of compliance and compressive fracture stress of ice. Cold Reg. Sci.Technol., 26(2), 137152.
Nowick, A. and Berry, B.. 1972. Anelastic relaxation in crystalline solids. New York, Academic Press.
Petrenko, V. F. and Whitworth, R. W.. 1999. Physics of ice. Oxford, etc., Oxford University Press.
St.Lawrence, W. F. and Cole, D. M.. 1982. Acoustic emissions from polycrystalline ice. Cold Reg. Sci.Technol., 5(3), 183199.
Sanderson, T. J. O. 1988. Ice mechanics: risks to offshore structures. London, etc., Graham and Trotman.
Schulson, E. M. 1996. The failure of ice under compression. In Arsenault, R. J. and 6 others, eds. The Johannes Weertman Symposium. Warrendale, PA, Minerals, Metals and Materials Society, 363374.
Schulson, E. M. and Gratz, E.T.. 1999. The brittle compressive failure of orthotropic ice under triaxial loading. Acta Mater., 47(3), 745755.
Sinha, N. K. 1989. Elasticity of natural types of polycrystalline ice. Cold Reg. Sci.Technol., 17(2), 127135.
Sinha, N. K. 1991. Kinetics of microcracking and dilatation in polycrystalline ice. In Jones, S. J., McKenna, R. F., Tillotson, J. and Jordaan, I. J., eds. Ice-structure Interaction. IUTAM–IAHR Symposium, St. John’s, Newfoundland, Canada. Berlin, etc., Springer-Verlag, 6987.
Tvergaard, V. and Hutchinson, J.W.. 1988. Microcracking in ceramics induced by thermal expansion and elastic anisotropy. J. Am. Ceramic Soc., 71(3), 157166.
Weertman, J. 1973. Creep of ice. In Whalley, E., Jones, S. J. and Gold, L., eds. Physics and chemistry of ice. Ottawa, Ont., Royal Society of Canada, 320337.
Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech., 18, 293297.
Weiss, J. and Schulson, E. M.. 1995. The failure of fresh-water granular ice under multiaxial compressive loading. Acta Metall. Mater., 43(6), 23032315.
Weiss, J., Schulson, E. M. and Frost, H. J.. 1996. The nucleation of microcracks in ice cubes compressed equally on all boundaries. Philos. Mag. A, 73(5), 13851400.
Weiss, J., Hotellier, N. and Gay, M.. 1999.The coupling between viscoplastic deformation and damage in ice. In Shen, H.T., ed. Ice in surface waters.Vol. 2 . Rotterdam, A. A. Balkema, 967972.
Wu, M. S. and Niu, J.. 1995. Mechanical predictions of the compressive failure of ice: model development. Mech. Mater., 20(1), 932.
Xiao, J. and Jordaan, I. J.. 1996. Application of damage mechanics to ice failure in compression. Cold Reg. Sci.Technol., 24(3), 305322.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed