Skip to main content Accessibility help

Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores

  • Vladimir B. Aizen (a1), Paul A. Mayewski (a2), Elena M. Aizen (a1), Daniel R. Joswiak (a1), Arzhan B. Surazakov (a1), Susan Kaspari (a2), Bijorn Grigholm (a2), Michael Krachler (a3), Mike Handley (a2) and Alexander Finaev (a4)...


In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world’s longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2–14 times lower than in the Altai glaciers. Loess from Afghan–Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century.

‘There is no culture without glaciers. Without the mountain ranges where the snow is accumulated over winter and eventually packed to become ice, the flat lands would be desert lands’

W. Rickmer Rickmers (1929); after his expedition to the Pamirs with R. Finsterwalder

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores
      Available formats



Hide All
Agahanyanc, O.E. 1965. Osnovnie problemi fiziceskoi geografii Pamira [Main problem of physical geography of the Pamir]. Vol. 1. Dushanbe, Academiya Nauk Tadjikistana. [In Russian.]
Aizen, V.B. and Aizen, E.M.. 1997. Hydrological cycles on the north and south peripheries of mountain glacial basins of central Asia. Hydrol. Process., 11(5), 451469.
Aizen, V.B., Aizen, E.M., Melack, J.M., Kreutz, K.J. and Cecil, L.D.. 2004. Association between atmospheric circulation patterns and firn–ice core records from the Inilchek glacierized area, central Tien Shan. J. Geophys. Res., 109(D8), D08304. (10.1029/ 2003JD003894.)
Aizen, V.B., Aizen, E., Fujita, K., Nikitin, S.A., Kreutz, K.J. and Takeuchi, N.. 2005. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia. J. Glaciol., 51(175), 637654.
Arpe, K., Bengtsson, L., Golitsyn, G.S., Mokhov, I.I., Semenov, V.A. and Sporyshev, P.V.. 2000. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett., 27(17), 26932696.
Arushev, M.L., Tsarev, B.K. and Shetinnikov, A.S.. 1977. K voprosu o vliyanii Indiiskogo mussona na regim lednikov Pamira [The question about influence of Indian monsoon on the regime of Pamir’s glaciers]. Mater. Glyatsiol. Issled. 36, 145148. [In Russian with English summary.]
Barbante, C. and 6 others. 1999. Trace element determination in alpine snow and ice by double focusing inductively coupled plasma mass spectrometry with microconcentric nebulization. J. Analy. Atom. Spectrom., 14(9), 14331438.
Barbante, C. and 7 others. 2003. Seasonal variations of heavy metals in central Greenland snow deposited from 1991 to 1995. J. Environ. Monitor., 5(2), 328335.
Barlow, M., Cullen, H. and Lyon, B.. 2002. Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15(7), 697700.
Barry, R.G. and Perry, A.H.. 1973. Synoptic climatology: methods and applications. London, Routledge, Chapman & Hall.
Berzon, I.S., Pak, V.A. and Yakovlev, V.N.. 1962. Stroenie lednika Fedchenko po geofizicheskim dannim (seismo-razvedka, gravimetriya) [Structure of Fedchenko Glacier by geophysical data (seismic and gravimetric surveys)]. Mater. Glyatsiol. Issled. 6, 9096. [In Russian.]
Bugaev, V.A., Dzordzio, V.A. and Kozik, E.M.. 1957. Sinopticheskie processi nad Srednei Aziey [Synoptic processes of central Asia]. Tashkent, Academiya Nauk Uzbekistoi SSR. [In Russian.]
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta, 12(1–2), 133149.
Demchenko, B.B., Medvedev, M.Yu. and Finaev, A.F.. 1985. Phitoindicaciya osadkov v doline reki Karadjilgasai, bassein ozera Zorkul [Phyto-indication of precipitation in the Karadjilgasai river basin, Sorkul lake, east Pamirs]. In Respublikanskaya nauchno-teoreticheskaya Konferenciya molodih uchenih i specialistov Tadjikstoi SSR [Proceedings of the Republican Scientific Theoretical Conference of Young Scientists and Specialists of the Tajik Republic]. Dushanbe, Donish, 3940. [In Russian.]
Dodonov, A.E., Sheckleton, N.J., Zhou, L.P., Lomov, S.P. and Finaev, A.F.. 1999. Loess-soil stratigraphy Quaternary Middle Asia: geochronology, correlation and evolution of palaeo environment. Stratigr. Geol. Correl., 7(6), 6680.
Dolgushin, L.D. and Osipova, G.B.. 1989. Ledniki [Glaciers]. Second edition. Moscow, Misl’. [In Russian.]
Elguindi, N. and Giorgi, F.. 2006. Simulating multi-decadal variability of Caspian Sea level changes using regional climate model outputs. Climate Dyn., 26(2–3), 167181.
Froelich, K., Gibson, J.J. and Aggarwal, P.K.. 2002. Deuterium excess in precipitation and its climatological significance. In Study of Environmental Change Using Isotope Techniques. Proceedings of an International Conference in Vienna, Austria, 23–27 April 2001. Vienna, International Atomic Energy Agency, 5465. (C&S Papers Series No. 13.)
Gabrielli, P. and 8 others. 2009. Direct determination of rare earth elements at the subpicogram per gram level in Antarctic ice by ICP-SFMS using a desolvation system. Anal. Chem., 78(6), 18831889.
Gomes, L. and Gillette, D.A.. 1993. A comparison of characteristics of aerosol from dust storms in central Asia with soil-derived dust from other regions. Atmos. Environ., 27(6), 25392544.
Grousset, F.E. and 6 others. 1992. Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: isotopic constraints on origin. Earth Planet. Sci. Lett., 111(1), 175182.
Hinkley, T.K., Pertsiger, F. and Zavjalova, L.. 1997. The modern atmospheric background dust load: recognition in central Asian snowpack and compositional constraints. Geophys. Res. Lett., 24(13), 16071610.
Ikegawa, M. and 7 others. 1999. Geographical variations of major and trace elements in East Antarctica. Atmos. Environ., 33(9), 14571467.
Il’inova, E.S., Tursunov, A.Yu. and Emm, Z.G.. 1965. Statistiko-stohasticheskaya charakteristika sinopticheskih situacii nad central’noi Asiaei [Statistical–stochastic characteristic of synoptic situation over central Asia]. Trudi SARNIIGMI, 20(35), 201243. [In Russian.]
Jouzel, J. and Merlivat, L.. 1984. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effect during snow formation. J. Geophys. Res., 89(D7), 11,74911,757.
Kendall, C. and McDonnell, J.J.. 1998. Isotope tracers in catchment hydrology. New York, Elsevier.
Krachler, M., Zheng, J., Fisher, D. and Shotyk, W.. 2004. Novel calibration procedure for improving trace element determinations in ice and water samples using ICP-SMS. J. Analy. Atom. Spectrom., 19(8), 10171019.
Kreutz, K.J. and Sholkovitz, E.R.. 2000. Major element, rare earth element, and sulfur isotopic composition of a high-elevation ice core: sources and transport of mineral dust in central Asia. Geochem. Geophys. Geosyst., 1(11), 1048. (10.1029/ 2000GC000082.)
Kreutz, K.J., Wake, C.P., Aizen, V.B., Cecil, L.D. and Synal, H.A.. 2003. Seasonal deuterium excess in a Tien Shan ice core: influence of moisture transport and recycling in Central Asia. Geophys. Res. Lett., 30(18), 1922. (10.1029/2003GL017896.)
Kurita, N., Yoshida, N., Inoue, G. and Chayanova, E.A.. 2004. Modern isotope climatology of Russia: a first assessment. J. Geophys. Res., 109(D3), D03102. (10.1029/2003JD003404.)
Kuznezova, L.P. 1978. Perenos vlagi v atmosfere nad territoriei SSSR [Moisture transport in the atmosphere over the territory of USSR]. Moscow, Nauka. [In Russian.]
Kuznezova, L.P. 1983. Atmosfernyi vlagoobmen nad territorei USSR [Atmospheric water exchange over the territory of USSR]. Moscow, Nauka. [In Russian.]
Lebedeva, I.M. 1976. Intensivnost’ ispareniya s lednikov Srednei i Centralnoi Azii [Glacier surface evaporation intensity in Central Asia]. Mater. Glyatsiol. Issled. 26, 119129. [In Russian with English summary.]
Li, Y. and 6 others. 2006. Recent changes of atmospheric heavy metals in high-elevation ice core from Muztagh Ata, east Pamirs: initial results. Ann. Glaciol., 43, 154159.
Loktionova-Aizen, E.M. 1995. [Number of days with snow cover: maximum water equivalent of snow cover, dates of its maximum 1:2500000 (USSR, Europe) and 1:150000 (Apees, Alps, Balkan, Carpathian, Scandinavia)]. In Kotlyakov, V.M., ed. [International Hydrological Project: World atlas of snow and ice resources]. Moscow, Russian Academy of Sciences. [In Russian.]
Meleshko, V.P. and 8 others. 1998. Calculation of water balance components over the Caspian Sea watershed with a set of atmospheric general circulation models. Izv. Akad. Nauk, Fiz. Atmos. Okeana, 34(4), 591599.
Merlivat, L. and Jouzel, J.. 1979. Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation. J. Geophys. Res., 84(C8), 50295033.
Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M.. 2001. On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Anal. Chem., 73(15), 35703575.
Nikolaeva, I.V., Saprykin, A.I. and Palesski, S.V.. 2003. ICP-MS determination of heavy metal content and isotopic composition of lead in the Altai glaciers. J. Phys. IV [Paris], 107(1), 957960.
Osterberg, E.C., Handley, M.J., Sneed, S.B., Mayewski, P.A. and Kreutz, K.J.. 2006. Continuous ice core melter system with discrete sampling for major ion, trace element, and stable isotope analyses. Environ. Sci. Technol., 40(10), 33553361.
Planchon, F.A.M. and 7 others. 2001. Ultrasensitive determination of heavy metals at the sub-picogram per gram level in ultraclean Antarctic snow samples by inductively coupled plasma sector field mass spectrometry. Anal. Chim. Acta, 450(1–2), 193205.
Rickmers, W.R. 1929. On the fringe of the Pamirs. Alp. J., 41(238–239).
Rodionov, S.N. 1994. Global and regional climate interaction: the Caspian Sea experience. Baton Rouge, LA, Kluwer Academic Press.
Shackleton, N.J. and 6 others. 1995. Accumulation rate of loess in Tajikistan and China: relationship with global ice volume cycles. Quat. Proc., 4, 16.
Shotyk, W., Krachler, M. and Chen, B.. 2005. Anthropogenic impacts on the biogeochemistry and cycling of antimony. Metal Ions Biol. Sys., 44, 177203.
Subbotina, O.I. 1995. Atmosfernaya circulaciaya [Atmospheric circulation]. In Muminova, F.A. and Inagamova, S.I., eds. Izmenenie klimata v Srednei Azii [Change of climate in middle Asia]. Tashkent, SARNIIGMI, 834. [In Russian.]
Svensson, A., Biscaye, P.E. and Grousset, F.E.. 2000. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res., 105(D4), 46374656.
Taylor, S.R. and McLennan, S.M.. 1985. The continental crust: its composition and evolution. Oxford, Blackwell Scientific Publications.
Taylor, S.R., McLennan, S.M. and McCulloch, M.T.. 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta, 47(11), 18971905.
Van de Velde, K. and 8 others. 2000. A two hundred years record of atmospheric cadmium, copper and zinc concentrations in high altitude snow and ice from the French–Italian Alps. Geophys. Res. Lett., 27(2), 249252.
Zabirov, R.D. 1955. Oledenenie Pamira [Glaciation of the Pamir]. Moscow, Geogragiz. [In Russian.]
Zhang, X.Y., Arimoto, R., Chen, Z.A.T., Zhang, G., Zhu, G. and Wang, X.. 1993. Atmospheric trace elements over source regions for Chinese dust: concentrations, sources and atmospheric deposition on the Loess Plateau. Atmos. Environ., 27(13), 20512067.
Zhang, X.Y., Arimoto, R., Zhu, G.H., Chen, T. and Zhang, G.Y.. 1998. Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus, 50B(4), 317330.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed