## REFERENCES

Aschwanden, A, Fahnestock, MA and Truffer, M (2016) Complex Greenland outlet glacier flow captured. Nat. Commun., 7 (doi: 10.1038/ncomms10524)

Balay, S and others (2015) *PETSc users manual – revision 3.6*. (Technical Report ANL-95/11) Argonne National Laboratory

Bamber, J, Layberry, R and Gogenini, S (2001) A new ice thickness and bed data set for the Greenland Ice Sheet 1: measurement, data reduction, and errors. J. Geophys. Res., 106(D24), 33773–33780

Benson, S and Munson, T (2006) Flexible complementarity solvers for large-scale applications. Optim. Method. Softw., 21(1), 155–168

Bindschadler, RA and 27 others (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE project). J. Glaciol., 59(214), 195–224

Briggs, W, Henson, VE and McCormick, S (2000) A multigrid tutorial, 2nd edn.
SIAM Press

Brown, J, Smith, B and Ahmadia, A (2013) Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. SIAM J. Sci. Comput., 35(2), B359–B375 (doi: 10.1137/110834512)

Bueler, E (2003) *Construction of steady state solutions for isothermal shallow ice sheets*. (Department of Mathematical Sciences Tech. Rep. 03-02) University of Alaska, Fairbanks

Bueler, E and Brown, J (2009) Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. J. Geophys. Res., 114, F03008 (doi: 10.1029/2008JF001179)

Bueler, E, Lingle, CS, Kallen-Brown, JA, Covey, DN and Bowman, LN (2005) Exact solutions and verification of numerical models for isothermal ice sheets. J. Glaciol., 51(173), 291–306

Cai, Z (1990) On the finite volume element method. Numerische Mathematik, 58(1), 713–735 (doi: 10.1007/BF01385651)

Calvo, N, Díaz, J, Durany, J, Schiavi, E and Vázquez, C (2002) On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics. SIAM J. Appl. Math., 63(2), 683–707 (doi: 10.1137/S0036139901385345)

Ciarlet, PG (2002) The finite element method for elliptic problems. SIAM Press, reprint of the 1978 original

Curtis, A, Powell, MJ and Reid, JK (1974) On the estimation of sparse Jacobian matrices. J. Inst. Math. Appl., 13(1), 117–120

Egholm, D and Nielsen, S (2010) An adaptive finite volume solver for ice sheets and glaciers. J. Geophys. Res.: Earth Surface, 115(F1) (doi: 10.1029/2009JF001394)

Elman, HC, Silvester, DJ and Wathen, AJ (2005) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press

Ettema, J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501 (doi: 10.1029/2009GL038110)

Ewing, RE, Lin, T and Lin, Y (2002) On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal., 39(6), 1865–1888

Fowler, AC (1997) Mathematical models in the applied sciences. Cambridge University Press

Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Advances in Geophysical and Environmental Mechanics and Mathematics, Springer

Hindmarsh, RCA and Payne, AJ (1996) Time-step limits for stable solutions of the ice-sheet equation. Ann. Glaciol., 23, 74–85

Hindmarsh, RCA, Morland, LW, Boulton, GS and Hutter, K (1987) The unsteady plane flow of ice-sheets: a parabolic problem with two moving boundaries. Geophys. Astrophys. Fluid Dyn., 39(3), 183–225 (doi: 10.1080/03091928708208812)

Hutter, K (1983) Theoretical glaciology. D. Reidel

Huybrechts, P and others (1996) The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 1–12

Jarosch, AH, Schoof, CG and Anslow, FS (2013) Restoring mass conservation to shallow ice flow models over complex terrain. Cryosphere, 7(1), 229–240 (doi: 10.5194/tc-7-229-2013)

Jouvet, G and Bueler, E (2012) Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation. SIAM J. Appl. Math., 72(4), 1292–1314 (doi: 10.1137/110856654)

Jouvet, G and Gräser, C (2013) An adaptive Newton multigrid method for a model of marine ice sheets. J. Comput. Phys., 252, 419–437 (doi: 10.1016/j.jcp.2013.06.032)

Jouvet, G, Rappaz, J, Bueler, E and Blatter, H (2011) Existence and stability of steady state solutions of the shallow ice sheet equation by an energy minimization approach. J. Glaciol., 57(202), 345–354

Kelley, C (2003) Solving nonlinear equations with Newton's method. SIAM Press

Kinderlehrer, D and Stampacchia, G (1980) An introduction to variational inequalities and their applications. Pure and Applied Mathematics, Academic Press

LeVeque, RJ (2002) Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press

Mahaffy, MW (1976) A three-dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res., 81(6), 1059–1066

Morlighem, M, Rignot, E, Mouginot, J, Seroussi, H and Larour, E (2014) Deeply incised submarine glacial valleys beneath the Greenland Ice Sheet. Nature Geosci., 7, 418–422 (doi: 10.1038/ngeo2167)

Morton, KW and Mayers, DF (2005) Numerical solutions of partial differential equations: an introduction, 2nd edn. Cambridge University Press

Pattyn, F and 20 others (2008) Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). Cryosphere, 2, 95–108

Ringler, T, Petersen, M, Higdon, R, Jacobsen, D, Jones, P and Maltrud, M (2013) A multi-resolution approach to global ocean modeling. Ocean Model., 69, 211–232

Smith, B, Bjorstad, P and Gropp, W (1996) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press

Strang, G (1972) Variational crimes in the finite element method. In The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, 689–710

van der Veen, CJ (2013) Fundamentals of glacier dynamics, 2nd edn. CRC Press

Winkelmann, R and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: model description. Cryosphere, 5, 715–726