Skip to main content Accessibility help
×
Home

Stability algorithm for snow micro-penetrometer measurements

  • Sascha Bellaire (a1), Christine Pielmeier (a1), Martin Schneebeli (a1) and Jürg Schweizer (a1)

Abstract

Information on snow-cover stability is important for predicting avalanche danger. Traditionally, stability evaluation is based on manual observations of snow stratigraphy and stability tests, which are time-consuming. The SnowMicroPen (SMP) is a high-resolution, constant-speed penetrometer to measure penetration resistance. We have analysed the resistance signal to derive snow stability. The proposed stability algorithm was developed by comparing 68 SMP force–distance profiles with the corresponding manual profiles, including stability tests. The algorithm identifies a set of four potentially weak layers by taking into account changes in structure and rupture strength of microstructural elements that make up snow layers as derived from the SMP signal. In 90% of the cases, one of the four potentially weak layers proposed by the algorithm coincided with the failure layer observed in the stability test. To select the critical layer from the four potential weaknesses was more difficult. With fully automatic picking of the critical layer, agreement with the failure layer observed in the stability test was reached in 60% of the cases. To derive a stability classification, we analysed weak-layer as well as slab properties. These predictor variables allow the SMP signal to be classified into two stability classes, poor and fair-to-good, with an accuracy of ∼75% when compared with observed stability. The SMP, in combination with the proposed algorithm, shows high potential for providing snow-cover stability information at high resolution in time and space.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stability algorithm for snow micro-penetrometer measurements
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stability algorithm for snow micro-penetrometer measurements
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stability algorithm for snow micro-penetrometer measurements
      Available formats
      ×

Copyright

References

Hide All
Akitaya, E. 1974. Studies on depth hoar. Contrib. Inst. Low Temp. Sci., Ser. A, 26,
Birkeland, K., Kronholm, K., Schneebeli, M. and Pielmeier, C.. 2004. Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer. Ann. Glaciol., 38, 223228.
Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A.. 1998. Classification and regression trees. Boca Raton, FL, CRC Press.
Colbeck, S.C. and 7 others. 1990. The international classification for seasonal snow on the ground. Wallingford, Oxon, International Association of Hydrological Sciences. International Commission on Snow and Ice.
Floyer, J. and Jamieson, J.B.. 2008. Avalanche weak layer tracing and detection in snow penetrometer profiles. In Locat, J., Perret, D., Turmel, D., Demers, D. and Leroueil, S., eds. Proceedings of the 4th Canadian Conference on Geohazards: From Causes to Management, 19–24 May 2008, Québec City, Que. Québec, Presse de l’Université Laval, 161168.
Föhn, P.M.B. 1987a. The ‘rutschblock’ as a practical tool for slope stability evaluation. IAHS Publ. 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 223228.
Föhn, P.M.B. 1987b. The stability index and various triggering mechanisms. IAHS Publ. 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 195214.
Habermann, M., Schweizer, J. and Jamieson, J.B.. 2008. Influence of snowpack layering on human-triggered snow slab avalanche release. Cold Reg. Sci. Technol., 54(3), 176182.
Jamieson, J.B. 1999. The compression test – after 25 years. Avalanche Rev., 18(1), 1012.
Jamieson, J.B. and Johnston, C.D.. 1998. Refinements to the stability index for skier-triggered dry-slab avalanches. Ann. Glaciol., 26, 296302.
Johnson, J.B. and Schneebeli, M.. 1999. Characterizing the microstructural and micromechanical properties of snow. Cold Reg. Sci. Technol., 30(1–3), 91100.
Kaempfer, T.U. and Schneebeli, M.. 2007. Observation of isothermal metamorphism of new snow and interpretation as a sintering process. J. Geophys. Res., 112(D24), D24101. (10.1029/2007JD009047.)
Kronholm, K. 2004. Spatial variability of snow mechanical properties with regard to avalanche formation. (PhD thesis, University of Zürich.)
Kronholm, K., Schneebeli, M. and Schweizer, J.. 2004. Spatial variability of micropenetration resistance in snow layers on a small slope. Ann. Glaciol., 38, 202208.
Lutz, E., Birkeland, K.W., Kronholm, K., Hansen, K. and Aspinall, R.. 2007. Surface hoar characteristics derived from a snow micropenetrometer using moving window statistical operations. Cold Reg. Sci. Technol., 47(1–2), 118133.
Matzl, M. 2006. Quantifying the stratigraphy of snow profiles. (PhD thesis, ETH Zürich.)
McClung, D. and Schaerer, P.. 2006. The avalanche handbook. Third edition. Seattle, WA, The Mountaineers.
Pielmeier, C. and Schweizer, J.. 2007. Snowpack stability information derived from the SnowMicroPen signal. Cold Reg. Sci. Technol., 47(1–2), 102107.
Pielmeier, C., Schweizer, J. and Marshall, H.P.. 2006. Improvements in the application of the SnowMicroPen to derive stability information for avalanche forecasting. In Gleason, J.A., ed. Proceedings of the International Snow Science Workshop, 1–6 October 2006, Telluride CO, October 1–6, 2006. 187192. CD-ROM.
Satyawali, P.K., Schneebeli, M., Pielmeier, C., Stucki, T. and Singh, A. K.. 2009. Preliminary characterization of Alpine snow using SnowMicroPen. Cold Reg. Sci. Technol., 55(3), 311320.
Schneebeli, M. and Johnson, J.B.. 1998. A constant-speed penetrometer for high-resolution snow stratigraphy. Ann. Glaciol., 26, 107111.
Schneebeli, M., Pielmeier, C. and Johnson, J.B.. 1999. Measuring snow microstructure and hardness using a high resolution penetrometer. Cold Reg. Sci. Technol., 30(1–3), 101114.
Schweizer, J. and Camponovo, C.. 2001. The skier’s zone of influence in triggering slab avalanches. Ann. Glaciol., 32, 314320.
Schweizer, J. and Jamieson, J.B.. 2001. Snow cover properties for skier triggering of avalanches. Cold Reg. Sci. Technol., 33(2–3), 207221.
Schweizer, J. and Jamieson, J.B.. 2003. Snowpack properties for snow profile analysis. Cold Reg. Sci. Technol., 37(3), 233241.
Schweizer, J. and Jamieson, J.B.. 2007. A threshold sum approach to stability evaluation of manual snow profiles. Cold Reg. Sci. Technol., 47(1–2), 5059.
Schweizer, J. and Kronholm, K.. 2007. Snow cover spatial variability at multiple scales: characteristics of a layer of buried surface hoar. Cold Reg. Sci. Technol., 47(3), 207223.
Schweizer, J., Jamieson, J.B. and Schneebeli, M.. 2003. Snow avalanche formation. Rev. Geophys., 41(4), 1016. (10.1029/2002RG000123.)
Spiegel, M.R. and Stephens, L.J.. 1999. Schaum’s outline of theory and problems of statistics. Second edition. New York, McGraw-Hill.
Van Herwijnen, A., Bellaire, S. and Schweizer, J.. In press. Comparison of micro structural snowpack parameters compressions tests. Cold Reg. Sci. Technol.
Wilks, D.S. 1995. Statistical methods in the atmospheric sciences. San Diego, CA, Academic Press.
Winkler, K. and Schweizer, J.. In press. Comparison of snow stability tests: extended column test, rutschblock test and compression test. Cold Reg. Sci. Technol.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed