Skip to main content Accessibility help
×
Home

Slip in Single Crystals of Ice

  • C. J. Readings (a1) and J. T. Bartlett (a1)

Abstract

Rectangular specimens of ice (c. 5 cm × 2 cm × 0.5 cm) were cut from large single crystals (c, 10 cm × 5 cm2) grown from pure water by a modified Bridgman technique. When these specimens were deformed under controlled conditions, slip lines which were predominantly parallel to the basal plane became visible. In some cases short. perpendicular segments were also seen which can be interpreted as evidence for cross-slip in ice. Measurements of slip-band spacings were made on silvered “formvar” replicas of some deformed crystals. These measurements showed that “coarse” slip occurred when the resolved shear stress on the basal plane. σ, was greater than about 0.2 bars, and that the average thickness of the slip lamellae, d (cm) was approximately given by Wakahama’s relationship. (σ−0.2) d = 0.45 × 10−3. At lower stresses “fine” slip occurred, and the relationship between the average thickness of the lamellae and the resolved shear stress was more adequately described by Taylor’s formula, σd = 7.2 × 10−5. It is. however, possible that both coarse and fine slip occurred at higher stresses, but that the fine slip was then below the limit of resolution.

Résumé

Glissement dans des monocristaux de glace. Des échantillons de glace rectangulaires (environ 5 × 2 × 0,5 cm) ont été coupés dans de larges monocristaux (environ 10 cm × 5 cm2) issus d’une eau pure par la technique de Bridgman modifiée. Lorsque ces échantillons étaient déformés dans des conditions controlées, des lignes de glissement principalement parallèles au plan de base devenaient visibles. Dans quelques cas, des segments courts perpendiculaires devenaient aussi visibles ce qui peut être interprété comme l’évidence d’un glissement dévié dans la glace. Des mesures des espacements entre les bandes de glissement ont été faites sur des repliques argentées “formvar” de quelques cristaux déformés. Ces mesures ont montré que le “gros” glissement a lieu lorsque la tension de cisaillement sur le plan de base σ était plus grande que 0·2 bar, et que l’épaisseur moyenne de la lamelle de glissement d (cm) était approximativement donnée par la relation de Wakahama (σ−0,2) d = 0,45 × 10−3. Pour des contraintes plus faibles, un glissement “fin” avait lieu, et la relation entre l’épaisseur moyenne de la lamelle et de la contrainte de cisaillement était mieux décrite par la formule de Taylor σd = 7,2 × 10−5. Il est cependant possible que les deux glissements “fin” et “gros” Ont lieu pour des contraintes plus fortes, mais que le glissement “fin” était dans ce cas en-dessous de la limite de résolution.

Zusammenfassng

Gleiten in Einkrislallen von Eis. Aus grossen Eis-Einkristallen (10 cm × 5 cm2), die aus reinem Wasser nach einer modifizierten Bridgman-Technik gezogen worden waren, wurden quaderförmige Eisproben (5 cm × 2 cm × 0,5 cm) gescfunitten. Bei kontrollierter Verformung dieser Proben wurden Gleitlinien sichtbar, die vorwiegend parallel zur Grundfläche verliefen. In einigen Fällen wurden kurze Teillinien senkrecht dazu beobachtet. die als Beweis für ein Querglcitcn des Eises gedeutet werden können. Die Abstände der Gleitlinien wurden in versilberten “Formvar”-Nachbildungen von einigen deformierten Kristallen ausgemessen. Diese Messungen zeigten dass “grobes” Gleiten auftrat. wenn die wirksame Scherspannung σ auf die Grundfläche grösser als etwa 0,2 bar war, und dass die mittlere Dicke d (cm) der Gleitschichten annähernd der Beziehung von Wakahama (σ−0,2) d = 0,45 × 10−3. entsprach. Bei niedrigeren Spannungen trat “feines” Gleiten ein; die Beziehung zwischen mittlerer Lamellendicke und Scherspannung wird dann besser durch Taylor’s Formel σd = 7,2 × 10−5. beschrieben. Es ist jedoch möglich, dass sowohl grobes als auch feines Gleiten bei höheren Spannungen auftrat, dass aber dann das feine Gleiten unterhalb der Auflösungsgrenze lag.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Slip in Single Crystals of Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Slip in Single Crystals of Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Slip in Single Crystals of Ice
      Available formats
      ×

Copyright

References

Hide All
Andrade, E. N. da C. Roscoe, R. 1937. Glide in metal single crystals. Proceedings of the Physical Society, Vol. 49, Pt. 2, p. 15277.
Bryant, G. W. Mason, B. J. 1960. Etch pits and dislocations in ice crystals. Philosophical Magazine, Eighth Ser., Vol. 5, No. 60, p. 122127.
Dorsey, N. E. 1940. Properties of ordinary water-substance in all its phases: water-vapor, water and all the ices. New York, Reinhold Publishing Corporation. (American Chemical Society. Monograph Series, No. 81.)
Glen, J. W. Perutz, M. F. 1954. The growth and deformation of ice crystals. Journal of Glaciology. Vol. 2, No. 16, p. 397403.
Gold, L. W. 1963. Deformation mechanisms in ice. (In Kingery, W. D., ed. Ice and snow; properties, processes, and applications: proceedings of a conference held at the Massachusetts Institute of Technology, February 12–16, 1962. Cambridge, Mass., The M.I.T. Press, p. 827.)
Higashi, A. Sakai, N. 1961. Movement of small angle boundary of ice crystal. Journal of the Physical Society of Japan, Vol. 16, No. 11, p. 235960.
Jaccard, C. 1959. Etude théorique et expérimentale des propriétés électriques de la glace. Helvelica Physica Acta, Vol. 32, Fasc. 2, p. 89128.
Jaccard, C. Levi, L. 1961. Segrégation d’impuretés dans la glace. Zeitschrift für angewandte Mathematik und Physik, Vol. 12, Fasc. 1, p. 7076.
Levi, L., and others. 1965. Experimental study of non-basal dislocations in ice crystals, by L. Levi, E. M. de Achaval and E. Suraski. Journal of Glaciology, Vol. 5, No. 41, p. 69199.
McConnel, J. C. 1890. On the plasticity of an ice crystal (preliminary note). Proceedings of the Royal Society, Vol. 48, No. 294, p. 25960.
McConnel, J. C. 1891. On the plasticity of an ice crystal. Proceedings of the Royal Society, Vol. 49, No. 299, p. 32343.
McConnel, J. C. Kidd, D. A. 1888. On the plasticity of glacier and other ice. Proceedings of the Royal Society, Vol. 44, No. 270, p. 33167.
Montgomery, H. A. C. Thom, N. S. 1962. The determination of low concentrations of organic carbon in water. Analyst, Vol. 87, No. 1038, p. 68997.
Muguruma, J. 1963. Etch pits on prism planes of plastically deformed ice crystals. Journal of the Faculty of Science, Hokkaido University, Ser. 2, Vol. 6, No. 1, p. 1122.
Muguruma, J. Higashi, A. 1963. Non-basal glide bands in ice crystals. Nature, Vol. 198, No. 4880, p. 573.
Nakaya, U. 1958[a]. The deformation of single crystals of ice. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Symposium de Chamonix, 16–24 sept. 1958, p. 22940.
Nakaya, U. 1958[b]. Mechanical properties of single crystals of ice. U.S. Snow, Ice and Permafrost Research Establishment. Research Report 28.
Schaefer, V. J. 1946. The production of ice crystals in a cloud of supercooled water droplets. Science, Vol. 104, No. 2707, p. 45759.
Steinemann, S. 1954. Results of preliminary experiments on the plasticity of ice crystals. Journal of Glaciology, Vol. 2, No. 16, p. 40413.
Taylor, G. I. 1934. The mechanism of plastic deformation of crystals. Part I—theoretical. Proceedings of the Royal Society, Ser. A, Vol. 145, No. 855, p. 36287.
Truby, F. K. 1955. Hexagonal microstructure of ice crystals grown from melt. Journal of Applied Physics, Vol. 26, No. 12 p. 141620.
Wakahama, G. 1962. On the plastic deformation of ice. I-IV. Teion-kagaku: Low Temperature Science, Ser. A, [No.] 20, p. 57130.

Slip in Single Crystals of Ice

  • C. J. Readings (a1) and J. T. Bartlett (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed