## References

Abdelrazek, AM, Kimura, I and Shimizu, Y (2014b) Numerical simulation of snow avalanches as a bingham fluid flow using SPH method. *Proceedings of river flow 2014, 7th international conference on fluvial hydraulics*, Lausanne, Switzerland, 3–5 September 2014, 1581–1587, CRC Press, Taylor & Francis Group (doi: 10.1201/b17133-210)

Abdelrazek, AM, Kimura, I and Shimizu, Y (2014a) Comparison between SPH and MPS methods for numerical simulations of free surface flow problems. J. Jpn. Soc. Civ. Eng.., Ser. B1 *(*Hydraulic Engineering*)*
, 70(4), I_67–I_72 (doi: 10.2208/jscejhe.70.I_67)

Abdelrazek, AM, Kimura, I and Shimizu, Y (2014c) Numerical simulation of a small-scale snow avalanche tests using non-Newtonian SPH model.
*J. Jpn. Soc. Civ. Eng., Ser. A2* (*Applied Mechanics* (*AM*)), 70(2), I_681–I_690 (doi: 10.2208/jscejam.70.I_681)

Amicarelli, A and 6 others (2011) SPH truncation error in estimating a 3D derivative. Int. J. Numer. Methods Eng., 87, 677–700 (doi: 10.1002/nme.3131)

Armstrong, BR, Williams, K and Armstrong, RL (1992) The Avalanche Book. Golden, Colorado. Fulcrum Publishing

Bui Ha, H, Sako, K and Fukagawa, R (2007) Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J. Terramech., 44, 339–346 (doi: 10.1016/j.jterra.2007.10.003)

Bui Ha, H, Fukagawa, R, Sako, K and Ohno, S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech., 32(12), 1537–1570 (doi: 10.1002/nag.688)

Bui Ha, H, Fukagawa, R, Sako, K and WELLS, JC (2010) Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Géotechnique, 61(7), 565–574 (doi: 10.1680/geot.9.P.046)

Chen, W and Qiu, T (2012) Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int. J. Geomech., 12(2), 127–135 (doi: 10.1061/(ASCE)GM.1943-5622.0000149)

Cui, X and Gray, JMNT (2013) Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech., 720, 314–337 (doi: 10.1017/jfm.2013.42)

Cui, X, Gray, JMNT and Johannesson, T (2007) Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. Earth Surf., 112, F04012 (doi: 10.1029/2006JF000712)

Cummins, SJ and Rudman, M (1999) An SPH projection method. J. Comput. Phys., 152, 584–607 (doi: 10.1006/jcph.1999.6246)

Dalrymple, RA and Knio, O (2001) SPH Modelling of Water Waves. *Proc. Coast. Dyn.*, ′01, 779–787, Sweden (doi: 10.1061/40566(260)80)

Faug, T, Beguin, R and Benoit, C (2009) Mean steady granular force on a wall over-flowed by free-surface gravity-driven dense flows. Phys. Rev. E, 80, 021305 (doi: 10.1103/PhysRevE.80.021305)

Gingold, RA and Monaghan, JJ (1977) Smoothed particle hydrodynamics: theory and application to nonspherical stars. Mon. Not. R. Astron. Soc., 181, 375–389 (doi: 10.1093/mnras/181.3.375)

Gray, JMNT and Cui, X (2007) Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows. J. Fluid Mech., 579, 113–136 (doi: 10.1017/S0022112007004843)

Gray, JMNT, Wieland, M and Hutter, K (1999) Gravity-driven free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A, 455, 1841–1874 (doi: 10.1098/rspa.1999.0383)

Gray, JMNT, Tai, YC and Noelle, S (2003) Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech., 491, 161–181 (doi: 10.1017/S0022112003005317)

Grigourian, SS, Eglit, ME and Iakimov, IL (1967) New statement and solution of the problem of the motion of snow avalanche. In Snow, Avalanches & Glaciers. Tr. Vysokogornogo Geofizich. Inst., Russia, **12**, 104–113 (In Russian)

Hakonardottir, KM and Hogg, A (2005) Oblique shocks in rapid granular flows. J. Phys. Fluids, 17(7), 077101 (doi: 10.1063/1.1950688)

Hanifa, T, Agra, B and Christian, F (2013) Three-dimensional smoothed particle hydrodynamics simulation for liquid droplet with surface tension. ISCS Sel., Papers (doi: arXiv: 1309.3868v1)

Hauksson, S, Pagliardi, M, Barbolini, M and Jóhannesson, T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg. Sci. Technol., 49, 54–63 (doi: 10.1016/j.coldregions.2007.01.007)

Hopkins, PF (2015) GIZMO: a new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not, R. Astron. Soc., 450, 53–110 (doi: 10.1093/mnras/stv195)

Iverson, RM (1997) The physics of debris-flows. Rev. Geophys., 35, 245–296 (doi: 10.1029/97RG00426)

Jiang, G and Tadmor, E (1997) Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput., 19, 1892–1917 (doi: 10.1137/S106482759631041X)

Jóhannesson, T, Gauer, P, Issler, D and Lied, K (2009) The design of avalanche protection dams: recent practical and theoretical developments. *European Commission, Directorate-General for Research. Publication EUR 23339* (doi: 10.2777/12871) ISBN 978-92-79-08885-8. ISSN 1018-5593

Johnson, CG and Gray, JMNT (2011) Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech., 675, 87–116 (doi: 10.1017/jfm.2011.2)

Kabir, MA, Lovell, MR and Higgs, CF III (2008) Utilizing the explicit finite element method for studying granular flows. Tribol. Lett., 29(2), 85–94 (doi: 10.1007/s11249–007-9285-y)

Koch, T, Greve, R and Hutter, K (1994) Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and Numerical Computations. Proc.: Math. Phys. Sci., 445(1924), 415–435 (doi: 10.1098/rspa.1994.0069)

Libersky, LD and Petschek, AG (1991) Smoothed particle hydrodynamics with strength of materials. In *Proceedings of the Next Free Lagrange Conference*, 395, Springer, New York, 248–257 (doi: 10.1007/3-540-54960-9_58)

Liu, GR and Liu, MB (2003) *Smoothed particle hydrodynamics: a mesh-free particle method*. World Scientific Publishing, Singapore

Liu, GR and Liu, MB (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng., 17, 25–76 (doi: 10.1007/s11831-010-9040-7)

Lube, G, Huppert, HE, Sparks, RSJ and Hallworth, MA (2004) Axisymmetric collapses of granular columns. J. Fluid Mech., 508, 175–199 (doi: 10.1017/S0022112004009036)

Lucy, L (1977) A numerical approach to testing the fission hypothesis. Astron. J., 82, 1013–1024 (doi: 10.1086/112164)

Mangeney-C, A and 6 others (2003) Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res, 108, 2527 (doi: 10.1029/2002JB002024)

Monaghan, JJ (1994) Simulating free surface flows with SPH. J. Comput. Phys., 110, 399–406 (doi: 10.1006/jcph.1994.1034)

Monaghan, JJ (2002) SPH compressible turbulence. Mon. Not. R. Astron. Soc., 335(3), 843–852 (doi: 10.1046/j.1365-8711.2002.05678.x)

Monaghan, JJ and Kocharyan, A (1995) SPH simulation of multiphase flow. Comput. Phys. Commun., 87, 225–235 (doi: 10.1016/0010-4655(94)00174-Z)

Monaghan, JJ and Lattanzio, JC (1985) A refined particle method for astrophysical problems. Astron. Astrophys., 149, 135–43

Savage, SB (1979) Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech., 92, 53–96 (doi: 10.1017/S0022112079000525)

Savage, SB and Hutter, K (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177–215 (doi: 10.1017/S0022112089000340)

Sigurdsson, F, Tomasson, GG and Sandersen, F (1998) *Avalanche defenses for Flateyri, Iceland. from hazard evaluation to construction of defences.* (Technical Report 203). Norw. Geotech. Inst., Oslo

Silbert, LE and 5 others (2001) Granular flow down an inclined plane: bagnold scaling and rheology. Phys. Rev. E, 64, 051302 (doi: 10.1103/PhysRevE.64.051302)

Sovilla, B, Schaer, M, Kern, M and Bartelt, p (2008) Impact pressures and flow regimes in dense snow avalanches observed at the Valĺ ee de la Sionne test site. J. Geophys. Res., 113, F01010 (doi: 10.1029/2006JF000688)

Tai, YC, Wang, Y, Gray, JMNT and Hutter, K (1999) Methods of similitude in granular avalanche flows. Adv. Cold-Reg. Therm. Eng. Sci.-Lect. Notes Phys., 533, 415–428 (doi: 10.1007/BFb0104200)

Tai, YC, Gray, JMNT, Hutter, K and Noelle, S (2001) Flow of dense avalanches past obstructions. Ann. Glaciol., 32(1), 281–284 (doi: 10.3189/172756401781819166)

Tai, YC, Noelle, S, Gray, JMNT and Hutter, K (2002) Shock capturing and front tracking methods for granular avalanches. J. Comput. Phys., 175, 269–301 (doi: 10.1006/jcph.2001.6946)

Vreman, AW, Al-Tarazi, M, Kuipers, JAM, Van Sint Annaland, M and Bokhove, O (2007) Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech., 578, 233–269 (doi: 10.1017/S0022112007005113)

Yaidel, RL, Dirk, R and Carlos, RM (2013) Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations. Comput. Mech., 51, 731–741 (doi: 10.1007/s00466-012-0748-0)

Yellin, K, Saito, Y, Kimura, I, Otsuki, M and Shimizu, Y (2013) Refinement of simulation model for practical design of energy dissipater for snow avalanche. *JSSI & JSSE Joint Conference on Snow and Ice Research*