Skip to main content Accessibility help
×
Home

Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar

  • Laurence C. Smith (a1), Richard R. Forster (a1), Bryan L. Isacks (a1) and Dorothy K. Hall (a2)

Abstract

The evolution of four dynamic radar glacier zones at the surface of an alpine icefield in British Columbia is monitored using a time series of 35 First European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) images acquired from 1992 to 1994. These zones result from changing wetness and textural properties, and appear to represent: (1) cold snow with no liquid water present; (2) an initial melt front with an upper boundary near the elevation of the 0° isotherm; (3) metamorphosed, rapidly melting first-year snow with a rough or pitted surface; and (4) bare ice. This interpretation is aided by temperature and runoff data, air photographs and field measurements of snowpack properties acquired with two ERS-1 SAR scenes, ice-surface elevations derived from 1:50 000 topographic maps and simulations of radar backscatter from a geometric optics model of surface scattering. Meltwater production is affected by the development of zones (2), (3) and (4), which form, migrate up-elevation and disappear each year between April and September.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar
      Available formats
      ×

Copyright

References

Hide All
Benson,, C S. 1962. Stratigraphic studies in the snow and firn of the Greenland ice sheet, SIPRE Res. Rep. 70.
Bicknell,, T. 1992. User’s guide to products, Alaska SAR facility SAR processor system. Version 1.0. Pasadena, CA, Jet Propulsion Laboratory. (Report JPL D- 9362.)
Bindschadler,, R.A. and Vornberger,, P.L. 1992. Interpretatio of SAR imagery of the Greenland ice sheet using coregistered TM imagery. Remote Sensing Environ., 42(3), 167175.
Braithwaite,, R.J. 1984. Cand the mass balance of a glacier be estimated from its equilibrium-line altitude. J. Glaciol., 30(106), 364168.
Denoth,, A. 1989. Snow dielectric measurements. Adv. Space Res., 9(1), 233243.
Donald,, J.R., Seglenieks,, F.R., Soulis,, E.D., Kouwen,, N. and Mullins,, D.W. 1993. Mapping partial snowcover during the melt season using C-band SAR imagery. Can. J. Remote Sensing., 19(1), 6876.
Dowdeswell,, J.A., Rees,, W.G. and Diament,, A.D. 1994. ERS-1 SAR investigations of snow and ice facies on ice caps in te Ruropean High Arctic. In Space at the Service of our Environment. Procedings of the Second ERS-1 Symposium, 11–40 October 1993, Hnburg, Germany. Vol. 2. Paris. European Space Agencyh, 11711176. (ESA SP-361).
Fahnestock,, M., Bindschadler,, R., Kwok,, R. and Jezed,, K. 1993. Greenland ice sheet surface properties and ice dynamics fromERS-1 SAR imagery. Science., 262 (5139), 1531534.
Forster,, R.R., Isacks, B.L., and Das,, S. 1996. Shuttle imaging radar (SIR-C/S-SAR) reveals near surafce properties of the South Patagonian Ice-field. J. Geophys. Res., 101(E10), 23,16923,180.
Forster,, R.R., Smith,, L.C. and Isacks,, B.L. 1997. Effects of weather events on X-SAR returns from ice fields: case-study of Hiclo Patagonico Sur, South America. Ann. Glaciol., 24, 367374.
Fung,, A.K., Li,, Z. and Chen,, K.S. 1922. Backscatter from a randomly rough diclectric surface. IEEE Trans. Geasci,. Remote SEnsing., GE-30(2), 356369.
Haeberli,, W., Müller,, P. Aleand,, P. and Büsch., H. 1989. Glacier changes folowing the Little Ice Age —a survey of the international data basis and its perspeectives. In. Ocrlemans,, J., ed. Glacier fluctuations and climatic change. Dordrecht, etc., Kluwer Academic Publishers, 77101.
Haefner,, H., Holecz,, F., Meier,, W., Ntesch,, D. and Piesbergen,, J. 1994. Capabilities and limitation of ERS-1SAR data for snowcover determination in mountainous regions. In Space at the Service fo our Environment, Proceeding of the Second ERS-1 Symposium, 11–14 October 1993, Hamburg, Germany. Vol. 2. Paris, European Space Agency, 971967. (ESA SP-361)
Hall,, D.K., Williams,, R.S. Jr., and Sigursson,, O. 1995. Glaciological observations of Brúarjükull, Iceland, using synthetic aperture radar and thematic mapper satellite data. Ann. Glaciol., 21, 271276.
Hallikainen,, M., Jääskeläinen,, V. Kurvonen,, L., Koskinen,, J., Herland, E.-A. and Preälä., J. 1933. Application of ERS-1 SAR data to snow mapping. In. Kaldeich,, B., ed. Proceedings of the First ERS-1 Symposium Space at the service of our Environment, 4– November 1992, Cannes, France. Vol. 2. Paris, European Space Agency, 589594. (ESA Special Publication SP-359).
Jezek,, K.C., Drinkwater,, M.R., Crawford,, J.P., Bindschadler,, R. and Kwok,, R., 1993. Analysis of synthetic aperture radar data collected over the southwestern Greenland ice sheet. J.Glaciol., 39(131), 119132.
Kattelmann,, R.C. 1995. Water movement and ripening processes in snowpacks of the Sierra Nevada. (Ph.D. thesis, University of California, Santa Barbara.)
Maxfield,, A.W. 1994. Radar satellite snowmelt detection in the Canadian Rocky Mountains. In. Stein,, T.I., ed. IGARSS ’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, California Institute of Technology, California, USA, August 8–12, 1944. Proceedings. Vol. 4. Pisacataway, NJ, Institute of Electrical and Electronics Engineers, 20742077.
Meier,, M.F. 1984. Contribution of small glaciers to global sea level. Science., 226(4681), 14181421.
O’Connor,, J.E. and Costa,, J.E. 1993. Geologic and hydrologtic hazards in glacierized basins in North America resulting from 19th and 20th century global warming. Natural Hazards., 8(2), 121140.
Østream,, G. 1975. ERTS data in glacioloty—an effort to monitor glacier mass balance from satellite imagery. J. Glaciol., 15(73), 403145.
Østrem,, G. and Brugman,, M. 1991. Glacier mass-balance meaurements. A manual for field and office work. Saskatoon, Sask., Environment Canada. National Hydrology Research Institute. (NHRI Science Report 4.)
Pelto,, M.S. 1987. Mass balance of south-east Aaska and north-west British Columbia glaciers form 1976 to 1984: methods and results. Ann. Glaciol., 9, 189194.
Pelto,, M.S. 1989. Satellite determination of Coast Range, Alaskan glacier mass balance related to atmospheric circulation. Intrnational Association of Hydrological Science Publication. 186 (Symposium at Baltimore 1989—Remote Sensng and Large-Scale global Processes), 127137.
Rees,, W.G., Dowdeswell,, J.A. and Diament,, A.D. 1995. Analysis of ERS-1 synthetic aperture radar data from Nrdaustlandet, Svalbard. Int. J. Remote Sensing., 16(5), 905924.
Rignot,, W. 1995. Backscatter model for the unusualradar properties of the Greenland ice sheet. J. Geophys. Res., 100(Es), 93899400.
Rott,, H. 1994. Thematic studies in alpine areas by means of polarimetric SAR and optical imagery. Adv. Space Res., 14(3), 217226.
Rott,, H. and Davis,, R.E. 1993. Multifrequency and polarimetric SAR obervations on alpine glaciers. Ann. Glaciol., 17, 98104.
Rott,, H. and Môtzler., C. 1987. Possibilities and limits of synthetic aperture radar for snow and glacier surveyng. Ann. Glaciol., 9, 195199.
Rott,, H. and Nagler,, T. 1993. Snow and glacier nvestigations by ERS-1 SAR — first result. In. Kaldeich,, B., ed. Proceedings of the First ERS-1-Symposium Space at the Service of our Environment, 4–6 November 1992, Cannes, France. Vol. 2. Paris, European Space Agancy, 577582. (ESA Special Publication SP-359.)
Rott,, H. and Nagler,, T. 1994. Capabilities of ERS-1 SAR for snow and glacier monitoring in alpine areas. In Spce at the service of our Environment. Proceedings of the Second ERS-1 Symposium, 11–14 October 1993, Hamburg, Germany. 1992. Paris, European Space Agency, 965970. (ESA SP-361.)
Jiancheng, Shi and Dozier,, J. 1992. Radar backscattering response to wet snow. In. Williamson,, R., ed. IGARSS’22. International Space Year: Space Remote Sensing, Houston, Texas, May 26–29, 1992. Proceedings. Vol 2. New York, Institute of Electrical and Electronics Engineers, 927929.
Jiancheng, Shi and Dozier,, J. 1993. Measurements of snow-and glacier-covered areas with single-polarization SAR. Ann, Glaciol., 17, 7276.
Jiancheng, Shi ad Dozier,, J. 1995. Inferring snow wetness using C-band data from SIR-C’s polarimetric sthetic aperture radar. IEEE Trans. Geosci. Remote Sensing., GE-33(4), 905914. (Correction: GE-33(6), 1995, 1340).
Jiancheng, Shi, Dozier,, J. and Rott,, H. 1993. Deriving snow liquid wate content using C-band polarimetric SAR. In IGARSS’93. Better Understanding of Earth Environment, Tokyo, Japan, 18–21 August 1993. Proceedings. Vol. 3. New York, Institute of Electrical and Electronies Engineers, 10381041.
Tangborn,, W.V. 1984. Prediction of glacier derived runoff for hydroelectric development. Geogr. Ann., 66A(3), 257265.
Ulaby,, F.T., Moore,, R.K. and Fung,, A. K., eds. 1982. Radar remote sensing and surface scattering and emission theory. vol.2. Reading, MA, Addison-Wesley Publishing Co.
Ulaby,, F.T., Moore,, R.K. and Fung,, A.K. 1986. Microwae remote sensing: active and passive. Vol.3. Dedham, MA, Artech House.
Van Zyl,, J., Chapman,, B., Dubois, P and WShi., P 1993. The effect of topography on SAR calibration. IEEE Trans. Geosci. Remote Sensing. GE-31(5), 10361043.
Winebrenner,, D.P., Nelson,, E.D., Colony,, R. and West,, R.D. 1994. Observation of melt onset on mutiyear Arctie sea ice usig the ERS 1 synthetic aperture radar. J. Geophys. Res., 99(C11), 22,42522,441.
Yarnal,, b. 1984. Relationships between synoptic-scale atmospheric circulation and glacier mass balance in south-western Canada during the International Hydrological decade, 1965–74. J. Glaciol., 30(105), 188198.
Young,, G.J., ed. 1985. Technique for prediction of runoff from glacierized areas. Wallingfore, Oxon., International Association of Hydrological Sciences. (IAHS Publication 149.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed