Skip to main content Accessibility help

Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014

  • Sam Herreid (a1) (a2), Francesca Pellicciotti (a1), Alvaro Ayala (a1), Anna Chesnokova (a1) (a3), Christian Kienholz (a2), Joseph Shea (a4) and Arun Shrestha (a4)...


Spatial evolution of supraglacial debris cover on mountain glaciers is a largely unmonitored and poorly understood phenomenon that directly affects glacier melt. Supraglacial debris cover for 93 glaciers in the Karakoram, northern Pakistan, was mapped from Landsat imagery acquired in 1977, 1998, 2009 and 2014. Surge-type glaciers occupy 41% of the study area and were considered separately. The time series of debris-covered surface area change shows a mean value of zero or near-zero change for both surging and non-surging glaciers. An increase in debris-covered area is often associated with negative regional mass balances. We extend this logic to suggest that the stable regional mass balances in the Karakoram explain the zero or near-zero change in debris-covered area. This coupling of trends combined with our 37 year time series of data suggests the Karakoram anomaly extends further back in time than previously known.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014
      Available formats


Copyright © International Glaciological Society 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Sam Herreid <>


Hide All
Anderson, RS (2000) A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts. J. Glaciol., 46(154), 459469 (doi: 10.3189/172756500781833025)
Archer, DR and Fowler, HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin: global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. Discuss., 8(1), 4761 (doi: 10.5194/hess-8-47-2004)
Bhambri, R, Bolch, T, Chaujar, RK and Kulshreshtha, SC (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J. Glaciol., 57(203), 543556 (doi: 10.3189/002214311796905604)
Bolch, T and Kamp, U (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Grazer Schr. Geogr. Raumforsch., 41, 3748
Bolch, T and 11 others (2012) The state and fate of Himalayan glaciers. Science, 336(6079), 310314 (doi: 10.1126/science.1215828)
Clapperton, CM (1975) The debris content of surging glaciers in Svalbard and Iceland. J. Glaciol., 14(72), 395406
Copland, L and 7 others (2011) Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res., 43(4), 503516 (doi: 10.1657/1938-4246-43.4.503)
Deline, P (2005) Change in surface debris cover on Mont Blanc massif glaciers after the ‘Little Ice Age’ termination. Holocene, 15(2), 302309 (doi: 10.1191/0959683605hl809rr)
Foster, LA, Brock, BW, Cutler, MEJ and Diotri, F (2012) A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol., 58(210), 677691 (doi: 10.3189/2012JoG11J194)
Fowler, HJ and Archer, DR (2006) Conflicting signals of climatic change in the Upper Indus Basin. J. Climate, 19(17), 42764293 (doi: 10.1175/JCLI3860.1)
Frey, H, Paul, F and Strozzi, T (2012) Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sens. Environ., 124, 832843 (doi: 10.1016/j.rse.2012.06.020)
Gardelle, J, Berthier, E and Arnaud, Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geosci., 5(5), 322325 (doi: 10.1038/ngeo1450)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7, 12631286 (doi: 10.5194/tc-7-1263-2013)
Grant, KL, Stokes, CR and Evans, IS (2009) Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. J. Glaciol., 55(194), 960972 (doi: 10.3189/002214309790794940)
Hewitt, K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt. Res. Dev., 25(4), 332340 (doi: 10.1659/0276-4741(2005)025)
Hewitt, K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev., 31(3), 188200 (doi: 10.1659/MRD-JOURNAL-D-11-00020.1)
Jouvet, G, Huss, M, Funk, M and Blatter, H (2011) Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate. J. Glaciol., 57(206), 10331045 (doi: 10.3189/002214311798843359)
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495498 (doi: 10.1038/nature11324)
Kellerer-Pirklbauer, A, Lieb, GK, Avian, M and Gspurning, J (2008) The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006. Geogr. Ann. A, 90(4), 269285 (doi: 10.1111/j.1468-0459.2008.00345.x)
Kienholz, C, Herreid, S, Rich, J, Arendt, A, Hock, R and Burgess, E (2015) Derivation and analysis of a complete modern-date glacier inventory for Alaska and northwest Canada. J. Glaciol., 61(227), 403420 (doi: 10.3189/2015JoG14J230)
Kirkbride, MP (1993) The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. Holocene, 3(3), 232240 (doi: 10.1177/ 095968369300300305)
Kirkbride, MP (2000) Ice-marginal geomorphology and Holocene expansion of debris-covered Tasman Glacier, New Zealand. IAHS Publ. 264 (Workshop at Seattle 2000 – Debris-Covered Glaciers), 211218
Kirkbride, MP and Deline, P (2013) The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf. Process. Landf., 38(15), 17791792 (doi: 10.1002/esp.3416)
Lambrecht, A and 6 others (2011) A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. Cryosphere, 5, 525538 (doi: 10.5194/tc-5-525-2011)
Lejeune, Y, Bertrand, J, Wagnon, P and Morin, S (2013) A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J. Glaciol., 59(214), 327344 (doi: 10.3189/2013JoG12J149)
Mazué, R, Deline, P and Kirkbride, MP (2009) Suivi de l’évolution de la couverture détritique d’un glacier noir par photo-comparaison: le glacier d’Estelette (Massif du Mont Blanc). Neige et glace de montagne: Reconstitution, dynamique, pratiques (Collection EDYTEM – Cahiers de Géographie 8), 171178 (doi: halsde-00404051)
Meier, MF and Post, A (1969) What are glacier surges? Can. J. Earth Sci., 6(4), 807817
Nagai, H, Fujita, K, Nuimura, T and Sakai, A (2013) Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. Cryosphere, 7(4), 13031314 (doi: 10.5194/tc-7-1303-2013)
Nakawo, M and Rana, B (1999) Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geogr. Ann. A, 81(4), 695701 (doi: 10.1111/j.0435-3676.1999.00097.x)
Nakawo, M, Raymond, CF and Fountain, A eds (2000) IAHS Publ. 264 (Workshop at Seattle 2000 – Debris-Covered Glaciers)
Østrem, G (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann., 41(4), 228230
Paul, F, Huggel, C and Kääb, A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ., 89(4), 510518 (doi: 10.1016/j.rse.2003.11.007)
Pellicciotti, F, Carenzo, M, Bordoy, R and Stoffel, M (2014) Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. Sci. Total Environ., 493, 11521170 (doi: 10.1016/j.scitotenv.2014.04.022)
Popovnin, VV and Rozova, AV (2002) Influence of sub-debris thawing on ablation and runoff of the Djankuat Glacier in the Caucasus. Nord. Hydrol., 33(1), 7594
Quincey, DJ and Glasser, NF (2009) Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007. Global Planet. Change, 68(3), 185197 (doi: 10.1016/j.gloplacha.2009.05.003)
Quincey, DJ and Luckman, A (2014) Brief Communication. On the magnitude and frequency of Khurdopin glacier surge events. Cryosphere, 8(2), 571574 (doi: 10.5194/tc-8-571-2014)
Ragettli, S, Pellicciotti, F, Bordoy, R and Immerzeel, WW (2013) Sources of uncertainty in modeling the glacio-hydrological response of a Karakoram watershed to climate change. Water Resour. Res., 49, 119 (doi: 10.1002/wrcr.20450)
Rankl, M, Vijay, S, Kienholz, C and Braun, M (2013) Glacier changes in the Karakoram region mapped by multi-mission satellite imagery. Cryosphere Discuss., 7(4), 40654099 (doi: 10.5194/ tcd-7-4065-2013)
Raup, B and Khalsa, SJS (2007) GLIMS analysis tutorial.
Reid, TD and Brock, BW (2010) An energy-balance model for debris-covered glaciers including heat conduction through the debris layer. J. Glaciol., 56(199), 903916 (doi: 10.3189/ 002214310794457218)
Rundquist, DC, Collins, SC, Barnes, RB, Bussom, DE, Samson, SA and Peake, JS (1980) The use of Landsat digital information for assessing glacier inventory parameters. IAHS Publ. 126 (Riedalp Workshop 1978 – World Glacier Inventory), 321331
Scherler, D, Bookhagen, B and Strecker, MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 4(3), 156159 (doi: 10.1038/ ngeo1068)
Shroder, JF, Bishop, MP, Copland, L and Sloan, VF (2000) Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geogr. Ann. A, 82(1), 1731 (doi: 10.1111/ j.0435-3676.2000.00108.x)
Shukla, A, Gupta, RP and Arora, MK (2009) Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin, Himalaya. J. Glaciol., 55(191), 444452 (doi: 10.3189/002214309788816632)
Shukla, A, Arora, MK and Gupta, RP (2010) Synergistic approach for mapping debris–covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ., 114(7), 13781387 (doi: 10.1016/j.rse. 2010.01.015)
Stokes, CR, Popovnin, V, Aleynikov, A, Gurney, SD and Shahgedanova, M (2007) Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Ann. Glaciol., 46, 195203 (doi: 10.3189/172756407782871468)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed