Skip to main content Accessibility help
×
Home

Rheology of till beneath Storglaciären, Sweden

  • Roger LeB. Hooke (a1), Brian Hanson (a2), Neal R. Iverson (a1), Peter Jansson (a3) and Urs H. Fischer (a4)...

Abstract

In order to study, in situ, the rheology of a deforming subglacial till, various instruments were emplaced in till beneath Storglaciären, Sweden. Boreholes were used to gain access to the till beneath about 100 m of ice. Tiltmeters provided an estimate of the shear strain rate in the till. Two other instruments yielded measures of till strength. In addition, water pressures were recorded in boreholes and in the till, a computer-controlled distance meter provided an effectively continuous record of the surface velocity and data from frequent surveys of a stake network were used to estimate the mean basal drag, based on a force-balance calculation.

Tilt rates varied directly with effective pressure, so decreases in water pressure apparently increased the coupling between the glacier and the bed. Surface speed was either out of phase with tilt or varied independently of tilt. Thus, increases in speed were apparently a consequence either of longitudinal coupling or of reduced coupling between the glacier and the bed; they were not a result of till deformation! Till strength varied directly with effective pressure, which is consistent with it being a Mohr – Coulomb, or frictional material. The devices measuring till strength are presumed to have been pulled through the till at a speed that varied in phase with the surface speed but till strength did not vary systematically with surface speed. This implies that the residual strength of the till is insensitive to strain rate. Thus, the appropriate constitutive equation for till rheology may be of the form:

where k is a constant. This is consistent with experimental data reported in the geotechnical literature.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Rheology of till beneath Storglaciären, Sweden
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Rheology of till beneath Storglaciären, Sweden
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Rheology of till beneath Storglaciären, Sweden
      Available formats
      ×

Copyright

References

Hide All
Abramowitz,, M. and Stegun, I. A., eds. 1965. Handbook of mathematical functions with formula, graphs, and mathematical tables. Cambridge, Cambridge University Press.
Alley,, R. B. 1991. Deforming-bed origin for southern Laurentide till sheets? J. Glaciol., 37(125), 6776.
Alley,, R. B., Blankenship, D. D., R, C.Bentley and Rooney, S. T. 1987a. Till beneath Ice Stream B. 3. Till deformation: evidence and implications. J. Geophys. Res., 92(B9), 89218929.
Alley,, R. B., Blankenship, D. D., Roony, S. T. and Bentley, C. R. 1987b. Till beneath Ice Stream B. 4. A coupled ice – till flow model. J. Geophys. Res., 92(B9), 89318940.
Bishop,, A. W., Green, G. E., Garga, V. K., Andersen, A. and Brown, J. D. 1971. A new ring shear apparatus and its application to the measurement of residual strength. Gétechnique, 21(4), 273328.
Blake,, E. W. 1992. The deforming bed beneath a surge-type glacier: measurement mechanical and electrical properties. (Ph.D. thesis, Universiiy of British Columbia.)
Blake,, E., Clarke, G. K. C. and Gérin., M. C. 1992. Tools for examining sub-glacial hed deformation. J. Glaciol., 38(130), 388396.
Blake,, E. W., Fischer, U. H. and Clarke., G. K. C. 1991. Direct measurement of sliding at the glacier bed.J. Glaciol., 40(136), 595599.
Blankenship,, D. D., Bentley, C. R., Rooney, S. T. and Alley, R. B. 1986. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 5457.
Boulton,, G. S. and Hindmarsh., R. C. A. 1987. Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92(B9). 90599082.
Carslaw,, H. S. and Jaeger, J. C. 1959. Conduction of heat in solids. Second edition. Oxford. Clarendon Press.
Clark,, P. U. 1992. Surface from ofthe southern Laurentide ice sheet and its implications to ice-sheel dynamics. Geol. Soc. Am. Bull., 104(5), 595605.
Fischer,, U. H. 1995. Mechanical conditions beneath a surge-type glacier. (Ph.D. thesis. University of British Columbia.)
Fischer,, U. H. and Clarke., G. K. C. 1994. Ploughing of subglacial sediment. J. Glaciol., 40(134), 97106.
Fischer,, U. H. and Clarke., G. K. C. In press. Stick – slip sliding behaviour at the base of a glacier. Ann. Glaciol., 24.
Hanson,, B. and Hooke, R. LeB. 1994. Short-term velocity variations and basal coupling near a bergschrund, Storglaciären, Sweden. J. Glaciol., 40(134), 6774.
Hooke,, R. LeB. 1976. Near-surface temperatures in the superimposed ice zone and lower pan of the soaked zone of polar ice sheets. [Abstract.] J. Glaciol., 16(74), 302304.
Hooke,, R. LeB. and Elverhøi., A. 1996. Sediment flux from a fjord during glacial periods, Isfjorden, Spitsbergen. Global and Planetary Changе, 12, 237249.
Hooke,, R. LeB. and Pohjola, V. A. 1994. Hydrology of a segment of a glacier situated in an overdeepeniog, Storglaciären, Sweden. J. Glaciol., 40(134), 140148.
Hooke,, R. LeB., Calla, P., Holmlund,, P., Nilsson, M. and Stroeven, A. 1989. A 3 year record of seasonal variations in surface velocity, Storglaciären, Sweden. J. Glaciol., 35(120). 235247.
Hooke,, R. LdB., Pohjola, V. A., Jansson, P. and Kohler, J. 1992. Intra-seasonal changes in deformation profiles revealed by borehole studies, Storglaciären, Sweden. J. Glaciol., 38, 348358.
Iverson,, N. R. and Baker, R. W. In press. Elasticity of subglacial till. J. Glacial.
Iverson,, N. R., Jansson, P. and Hooke, R. LeB. 1994. In-situ measurement of the strength of deforming subglacial till. J. Glaciol., 40(136), 497503.
Iverson,, N. R., Hanson, B., Hooke, R. LeB. and Janssen, P. 1995. Flow mechanism of glaciers on soft beds. Science, 267(5194), 8081.
Iverson,, N. R., Baker, R. W. and Hooyer, T. S. In press. A ring-shear device for study of till deformation: tests on a clay-rich and a clay-poor till. Quat. Sci. Rev.
Kamb,, W. B. 1991. Rheological nonlinearity and flow instability in the deforming-bed mechanism of ice-stream motion. J. Geophys. Res., 96(B10), 16, 58516, 595.
MacClintock,, P. and Dreimanis, A. 1964. Reorientation of till fabric by an overriding glacier in the St. Lawrence Valley. Am. J. Sci., 262(1), 133112.
Mathews,, W. H. 1974. Surface profiles of the Laurentide ice sheet in its marginal areas. J. Glaciol., 13(67). 3743.
Mercer,, J. H. 1978. West Antartctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271(5643), 321325.
Mitchell,, J. K. 1993. Fundamentals of soil behaviour. Second edition. New York, John Wiley and Sons.
Nakase,, A. and Kamei, T. 1986. Influence of strain rate on uudrained shear characteristics of K6-consolidated cohesive soils. Soils and Foundations, 26(1), 8595.
Nye,, J. F. 1952. The mechanics of glacier flow. J. Glaciol., 2(12), 8293.
Östling,, M. and Hooke., R. LeB 1986. Water storage in Storglaciären, Kebnekaise, Sweden. Geogr. Ann., 68A(4), 279290.
Pohjola,, V. A. 1993. TV-video observations of bed and basal sliding on Storglaciären, Sweden. J. Glaciol., 39(131), 111118.
Skempton,, A. W. 1985. Residual strength of clays in landslides, folded strata, and the laboratory. Géotechnique, 35(1), 318.
Skempton,, A. W. and Bishop, A. W. 1954. Soils. In Building material. North Holland Publishing Co., 417482.
Van der Veen,, C. J. and Whillans, I. M. 1989. Force budget: 1. Theory and numerical methods. J. Glaciol., 35(119), 5360.
Weertman,, J. 1972. General theory of water flow at the base of a glacier or ice sheet. Rev. Geophys. Space Phys., 10(1), 287333.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed