Skip to main content Accessibility help
×
×
Home

Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015)

  • H. JAY ZWALLY (a1) (a2), JUN LI (a3), JOHN W. ROBBINS (a4), JACK L. SABA (a5), DONGHUI YI (a3) and ANITA C. BRENNER (a6)...
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015)
      Available formats
      ×

Abstract

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

E-mail: H. Jay Zwally <jayzwallyice@verizon.net>

References

Hide All
Davis, CH, Li, Y, McConnell, JR, Frey, MM and Hanna, E (2005) Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science, 308
Hanna, E and 11 others (2013) Ice sheet mass balance and climate change. Nature, 498 (doi: 10.1038/nature12238)
Helm, V, Humbert, A and Miller, H (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere, 8, 15391559 (doi: 10.5194/tc-8-1539-2014)
McMillan, M and 7 others (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett., 41 (doi: 10.1002/2014GL060111)
Rémy, F, Flament, T, Blarel, F and Benveniste, J (2012) Radar altimetry measurements over Antarctic ice sheet: a focus on antenna polarization and change in backscatter problems. Adv. Space Res., 50
Scambos, T and Shuman, C (2016) Comment on Mass Gains of the Antarctic Ice Sheet exceed Losses by H. J. Zwally and others. J. Glaciol. (doi: 10.1017/jog.2016.59)
Scharroo, R and 5 others (2013) RADS: Consistent multi-mission products, in Proc. Symp. on 20 Years of Progress in Radar Altimetry, Venice, 20–28 September 2012, European Space Agency Specification Publ., ESA SP-710, p. 4 pp
Shepherd, A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189.
Wang, W, Li, J and Zwally, HJ (2012) Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet. J. Glaciol., 58(210), 734740 (doi: 10.3189/2012JoG11J187)
Wang, W, Li, J and Zwally, HJ (2013) Modeling dynamic thickening in East Antarctica as observed from ICESat, Abstract C53B-0571 presented at 2013 Fall Meeting, AGU, San Francisco, California, 9–13 December
Wingham, DJ, Ridout, AL, Scharroo, R, Arthern, RJ and Shum, CK (1998) Antarctic elevation change 1992 to 1996. Science, 282(5388), 456458.
Wingham, DJ, Shepherd, A, Muir, A and Marshall, GJ (2006) Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 364, 16271635 (doi: 10.1098/rsta.2006.1792)
Zwally, HJ and 7 others (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509527 (doi: 10.3189/172756505781829007)
Zwally, HJ and 5 others (2015) Mass gains of the Antarctic ice sheet exceed losses. J. Glaciol., 61(230), 10191035 (doi: 10.3189/2015JoG15J071)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
PDF
Supplementary materials

Zwally supplementary material
Zwally supplementary material 1

 PDF (126 KB)
126 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed